Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

[1]  Mark Yeager,et al.  Atomic-level modelling of the HIV capsid , 2011 .

[2]  R. Gijsbers,et al.  Interplay between HIV Entry and Transportin-SR2 Dependency , 2011, Retrovirology.

[3]  J. Nieman,et al.  HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention , 2010, PLoS pathogens.

[4]  C. Aiken,et al.  Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization , 2010, Journal of Virology.

[5]  A. Engelman,et al.  Flexible use of nuclear import pathways by HIV-1. , 2010, Cell host & microbe.

[6]  E. Freed,et al.  Novel approaches to inhibiting HIV-1 replication. , 2010, Antiviral research.

[7]  Raymond E. Moellering,et al.  Direct inhibition of the NOTCH transcription factor complex , 2010, Nature.

[8]  Peijun Zhang,et al.  Structural Convergence between Cryo-EM and NMR Reveals Intersubunit Interactions Critical for HIV-1 Capsid Function , 2009, Cell.

[9]  A. Ansari,et al.  Chemical biology: A Notch above other inhibitors , 2009, Nature.

[10]  E. Freed,et al.  Virus maturation as a new HIV-1 therapeutic target , 2009, Expert opinion on therapeutic targets.

[11]  J. Briggs,et al.  Structure and assembly of immature HIV , 2009, Proceedings of the National Academy of Sciences.

[12]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[13]  Joe Lewis,et al.  Residues in the HIV-1 Capsid Assembly Inhibitor Binding Site Are Essential for Maintaining the Assembly-competent Quaternary Structure of the Capsid Protein* , 2008, Journal of Biological Chemistry.

[14]  L. Chaloin,et al.  VSV-G pseudotyping rescues HIV-1 CA mutations that impair core assembly or stability , 2008, Retrovirology.

[15]  Tam-Linh N Nguyen,et al.  Cooperative role of the MHR and the CA dimerization helix in the maturation of the functional retrovirus capsid. , 2008, Virology.

[16]  A. Debnath,et al.  A cell-penetrating helical peptide as a potential HIV-1 inhibitor. , 2008, Journal of molecular biology.

[17]  J. Flanagan,et al.  Critical Role of Conserved Hydrophobic Residues within the Major Homology Region in Mature Retroviral Capsid Assembly , 2008, Journal of Virology.

[18]  Mark Yeager,et al.  The structural biology of HIV assembly. , 2008, Current opinion in structural biology.

[19]  R. Shin,et al.  Solution structure of a double mutant of the carboxy-terminal dimerization domain of the HIV-1 capsid protein. , 2008, Biochemistry.

[20]  Anchi Cheng,et al.  Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice , 2007, Cell.

[21]  S. Höglund,et al.  Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity , 2007, Retrovirology.

[22]  I. Hewlett,et al.  HIV-1 capsid protein and cyclophilin a as new targets for anti-AIDS therapeutic agents. , 2007, Infectious disorders drug targets.

[23]  Yu-Fen Chang,et al.  Mutations in capsid major homology region affect assembly and membrane affinity of HIV-1 Gag. , 2007, Journal of molecular biology.

[24]  Steven Fletcher,et al.  Protein-protein interaction inhibitors: small molecules from screening techniques. , 2007, Current topics in medicinal chemistry.

[25]  Christopher L. Fillmore,et al.  Electron cryotomography of immature HIV‐1 virions reveals the structure of the CA and SP1 Gag shells , 2007, The EMBO journal.

[26]  S. Korsmeyer,et al.  Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. , 2007, Journal of the American Chemical Society.

[27]  S. Höglund,et al.  Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity , 2007, Retrovirology.

[28]  G. Wagner,et al.  Domain-swapped dimerization of the HIV-1 capsid C-terminal domain , 2007, Proceedings of the National Academy of Sciences.

[29]  S. Korsmeyer,et al.  A stapled BID BH3 helix directly binds and activates BAX. , 2006, Molecular cell.

[30]  K. Nagashima,et al.  Mutation of Dileucine-Like Motifs in the Human Immunodeficiency Virus Type 1 Capsid Disrupts Virus Assembly, Gag-Gag Interactions, Gag-Membrane Binding, and Virion Maturation , 2006, Journal of Virology.

[31]  W. Liao,et al.  A domain directly C-terminal to the major homology region of human immunodeficiency type 1 capsid protein plays a crucial role in directing both virus assembly and incorporation of Gag-Pol. , 2006, Virology.

[32]  S. Fletcher,et al.  Targeting protein–protein interactions by rational design: mimicry of protein surfaces , 2006, Journal of The Royal Society Interface.

[33]  P. Watt,et al.  Screening for peptide drugs from the natural repertoire of biodiverse protein folds , 2006, Nature Biotechnology.

[34]  F. Förster,et al.  The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. , 2006, Structure.

[35]  Marc C. Johnson,et al.  The Retroviral Capsid Domain Dictates Virion Size, Morphology, and Coassembly of Gag into Virus-Like Particles , 2005, Journal of Virology.

[36]  Hans-Georg Kräusslich,et al.  The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor , 2005, Nature Structural &Molecular Biology.

[37]  V. Vogt Blocking HIV-1 virus assembly , 2005, Nature Structural &Molecular Biology.

[38]  Barbara Müller,et al.  A peptide inhibitor of HIV-1 assembly in vitro , 2005, Nature Structural &Molecular Biology.

[39]  A. Hamilton,et al.  Strategies for targeting protein-protein interactions with synthetic agents. , 2005, Angewandte Chemie.

[40]  E. Barklis,et al.  Assembly of Human Immunodeficiency Virus Precursor Gag Proteins* , 2005, Journal of Biological Chemistry.

[41]  A. Lazzarin Enfuvirtide: the first HIV fusion inhibitor , 2005, Expert opinion on pharmacotherapy.

[42]  E. Barklis,et al.  Virus Particle Core Defects Caused by Mutations in the Human Immunodeficiency Virus Capsid N-Terminal Domain , 2005, Journal of Virology.

[43]  C. Wild,et al.  HIV-1 assembly and budding as targets for drug discovery. , 2005, Current opinion in investigational drugs.

[44]  Mauricio G Mateu,et al.  Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. , 2005, Journal of molecular biology.

[45]  A. Debnath,et al.  N-Substituted Pyrrole Derivatives as Novel Human Immunodeficiency Virus Type 1 Entry Inhibitors That Interfere with the gp41 Six-Helix Bundle Formation and Block Virus Fusion , 2004, Antimicrobial Agents and Chemotherapy.

[46]  S. Höglund,et al.  Selected amino acid substitutions in the C-terminal region of human immunodeficiency virus type 1 capsid protein affect virus assembly and release. , 2004, The Journal of general virology.

[47]  M. Wainberg,et al.  In Vitro Identification and Characterization of an Early Complex Linking HIV-1 Genomic RNA Recognition and Pr55Gag Multimerization* , 2004, Journal of Biological Chemistry.

[48]  S. Korsmeyer,et al.  Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix , 2004, Science.

[49]  Jason Lanman,et al.  Investigation of N-terminal domain charged residues on the assembly and stability of HIV-1 CA. , 2004, Biochemistry.

[50]  M. G. Mateu,et al.  The dimerization domain of the HIV‐1 capsid protein binds a capsid protein‐derived peptide: A biophysical characterization , 2004, Protein science : a publication of the Protein Society.

[51]  Michelle R. Arkin,et al.  Small-molecule inhibitors of protein–protein interactions: progressing towards the dream , 2004, Nature Reviews Drug Discovery.

[52]  Wesley I. Sundquist,et al.  Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein , 2004, Journal of Virology.

[53]  I. Jones,et al.  The molecular basis of HIV capsid assembly—five years of progress , 2004, Reviews in medical virology.

[54]  E. Freed,et al.  Late Domain-Dependent Inhibition of Equine Infectious Anemia Virus Budding , 2004, Journal of Virology.

[55]  A. Cooper,et al.  Energetics of cyclodextrin-induced dissociation of insulin , 1996, European Biophysics Journal.

[56]  J. Cervia,et al.  Enfuvirtide (T-20): a novel human immunodeficiency virus type 1 fusion inhibitor. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[57]  M. G. Mateu,et al.  Thermodynamic Dissection of a Low Affinity Protein-Protein Interface Involved in Human Immunodeficiency Virus Assembly* , 2003, Journal of Biological Chemistry.

[58]  Wesley I. Sundquist,et al.  Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein , 2003, Journal of Virology.

[59]  Eric Barklis,et al.  Antiviral inhibition of the HIV-1 capsid protein. , 2003, Journal of molecular biology.

[60]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[61]  M. Shultz,et al.  Interfacial peptide inhibitors of HIV-1 integrase activity and dimerization. , 2003, Bioorganic & medicinal chemistry letters.

[62]  Michelle R. Arkin,et al.  Binding of small molecules to an adaptive protein–protein interface , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Wesley I. Sundquist,et al.  Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication , 2002, Journal of Virology.

[64]  J. Kappes,et al.  Emergence of Resistant Human Immunodeficiency Virus Type 1 in Patients Receiving Fusion Inhibitor (T-20) Monotherapy , 2002, Antimicrobial Agents and Chemotherapy.

[65]  M. G. Mateu Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein. , 2002, Journal of molecular biology.

[66]  M. Blackledge,et al.  Solution structure and dynamics of Crh, the Bacillus subtilis catabolite repression HPr. , 2002, Journal of molecular biology.

[67]  A. Patnaik,et al.  Budding of Equine Infectious Anemia Virus Is Insensitive to Proteasome Inhibitors , 2002, Journal of Virology.

[68]  Shibo Jiang,et al.  Design of a protein surface antagonist based on alpha-helix mimicry: inhibition of gp41 assembly and viral fusion. , 2002, Angewandte Chemie.

[69]  J. Mouscadet,et al.  Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers. , 2001, Biochemistry.

[70]  S. Scarlata,et al.  HIV-1 capsid protein forms spherical (immature-like) and tubular (mature-like) particles in vitro: structure switching by pH-induced conformational changes. , 2001, Biophysical journal.

[71]  S. Scarlata,et al.  Role of the major homology region in assembly of HIV-1 Gag. , 2001, Biochemistry.

[72]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[73]  A. Hamilton,et al.  Peptide and protein recognition by designed molecules. , 2000, Chemical reviews.

[74]  G. Verdine,et al.  An All-Hydrocarbon Cross-Linking System for Enhancing the Helicity and Metabolic Stability of Peptides , 2000 .

[75]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[76]  L. Hanna T-20: first of a new class of anti-HIV drugs. , 1999, BETA : bulletin of experimental treatments for AIDS : a publication of the San Francisco AIDS Foundation.

[77]  W. Sundquist,et al.  Biological Crystallography Structures of the Hiv-1 Capsid Protein Dimerization Domain at 2.6 a Ê Resolution , 2022 .

[78]  B. Chesebro,et al.  Effects of CCR5 and CD4 Cell Surface Concentrations on Infections by Macrophagetropic Isolates of Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.

[79]  W. Sundquist,et al.  Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. , 1997, Science.

[80]  H. Kräusslich,et al.  In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. , 1997, European journal of biochemistry.

[81]  James Js T-20: entirely new antiretroviral. , 1997 .

[82]  R. Kettmann,et al.  The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. , 1997, The Journal of general virology.

[83]  A. Cooper,et al.  Thermodynamics and kinetics of dissociation of ligand-induced dimers of vancomycin antibiotics , 1997 .

[84]  J. James T-20: entirely new antiretroviral. , 1997, AIDS treatment news.

[85]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[86]  F. Gage,et al.  Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  I. Kuntz,et al.  Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Carol Carter,et al.  Crystal structure of dimeric HIV-1 capsid protein , 1996, Nature Structural Biology.

[89]  R S Goody,et al.  Interface Peptides as Structure-based Human Immunodeficiency Virus Reverse Transcriptase Inhibitors (*) , 1995, The Journal of Biological Chemistry.

[90]  E. Freed,et al.  p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease , 1995, Journal of virology.

[91]  J. Wills,et al.  Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein , 1995, Journal of virology.

[92]  E. Freed,et al.  Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix , 1995, Journal of virology.

[93]  A. Gronenborn,et al.  Three‐dimensional structures of α and β chemokines , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[94]  S. Höglund,et al.  Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis , 1994, Journal of virology.

[95]  E. Freed,et al.  Evidence for a functional interaction between the V1/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gp120 , 1994, Journal of virology.

[96]  J. Burns,et al.  Generation of high-titer pseudotyped retroviral vectors with very broad host range. , 1994, Methods in cell biology.

[97]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[98]  C. Strambio-De-Castillia,et al.  Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis , 1992, Journal of virology.

[99]  S. Jiang,et al.  Enhancement of human immunodeficiency virus type 1 infection by antisera to peptides from the envelope glycoproteins gp120/gp41 [published erratum appears in J Exp Med 1992 Feb 1;175(2):621] , 1991, The Journal of experimental medicine.

[100]  H. Gendelman,et al.  Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone , 1986, Journal of virology.