Mfn2 modulates the UPR and mitochondrial function via repression of PERK

[1]  T. Veenstra,et al.  Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. , 2012, Molecules and Cells.

[2]  P. Agostinis,et al.  PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress , 2012, Cell Death and Differentiation.

[3]  Xianhua Wang,et al.  Central Role of Mitofusin 2 in Autophagosome-Lysosome Fusion in Cardiomyocytes* , 2012, The Journal of Biological Chemistry.

[4]  K. Walsh,et al.  Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress* , 2012, The Journal of Biological Chemistry.

[5]  G. Dorn,et al.  Bax regulates primary necrosis through mitochondrial dynamics , 2012, Proceedings of the National Academy of Sciences.

[6]  M. Orešič,et al.  Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis , 2012, Proceedings of the National Academy of Sciences.

[7]  R. Salgia,et al.  Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  J. McClintick,et al.  The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress , 2011, Molecular biology of the cell.

[9]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[10]  J. Vicencio,et al.  Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress , 2011, Journal of Cell Science.

[11]  W. Sessa,et al.  The Role of Nogo and the Mitochondria–Endoplasmic Reticulum Unit in Pulmonary Hypertension , 2011, Science Translational Medicine.

[12]  J. East,et al.  A diversity of SERCA Ca2+ pump inhibitors. , 2011, Biochemical Society transactions.

[13]  N. Borgese,et al.  Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein , 2011, Proceedings of the National Academy of Sciences.

[14]  D. Ron,et al.  Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress , 2011, Nature Cell Biology.

[15]  Soojay Banerjee,et al.  The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. , 2011, Molecular cell.

[16]  I. Tabas,et al.  NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis , 2010, The Journal of cell biology.

[17]  P. Pandolfi,et al.  PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release , 2010, Science.

[18]  A. Harris,et al.  Regulation of autophagy by ATF4 in response to severe hypoxia , 2010, Oncogene.

[19]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[20]  M. Ogihara,et al.  The Endoplasmic Reticulum Stress Response Factor CHOP-10 Protects against Hypoxia-induced Neuronal Death , 2010, The Journal of Biological Chemistry.

[21]  G. Hotamisligil,et al.  Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease , 2010, Cell.

[22]  Eun Hee Kim,et al.  Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. , 2010, Free radical biology & medicine.

[23]  Philippe Lambin,et al.  The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. , 2010, The Journal of clinical investigation.

[24]  Robert H. Brown,et al.  XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. , 2009, Genes & development.

[25]  Mark E. Anderson,et al.  Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. , 2009, The Journal of clinical investigation.

[26]  Peter J. Belmont,et al.  Ischemia Activates the ATF6 Branch of the Endoplasmic Reticulum Stress Response* , 2009, The Journal of Biological Chemistry.

[27]  R. Rizzuto,et al.  Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. , 2008, Molecular cell.

[28]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[29]  J. Aguirre-Ghiso,et al.  ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo , 2008, Proceedings of the National Academy of Sciences.

[30]  Yan-hong Guo,et al.  Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells , 2008, Molecular Cancer Therapeutics.

[31]  Yan-hong Guo,et al.  Mitofusin 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway , 2007, Circulation research.

[32]  Heping Cheng,et al.  Mitofusin-2 Is a Major Determinant of Oxidative Stress-mediated Heart Muscle Cell Apoptosis* , 2007, Journal of Biological Chemistry.

[33]  Craig Brooks,et al.  Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins , 2007, Proceedings of the National Academy of Sciences.

[34]  Tomomi Gotoh,et al.  ER Stress Triggers Apoptosis by Activating BH3-Only Protein Bim , 2007, Cell.

[35]  Y Kouroku,et al.  ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation , 2007, Cell Death and Differentiation.

[36]  Douglas T. Golenbock,et al.  Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages , 2006, Proceedings of the National Academy of Sciences.

[37]  R. Youle,et al.  Role of Bax and Bak in mitochondrial morphogenesis , 2006, Nature.

[38]  F. Urano,et al.  Autophagy Is Activated for Cell Survival after Endoplasmic ReticulumStress , 2006, Molecular and Cellular Biology.

[39]  Daniel J Klionsky,et al.  Endoplasmic Reticulum Stress Triggers Autophagy* , 2006, Journal of Biological Chemistry.

[40]  D. Chan,et al.  Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction* , 2005, Journal of Biological Chemistry.

[41]  H. McBride,et al.  Activated Mitofusin 2 Signals Mitochondrial Fusion, Interferes with Bax Activation, and Reduces Susceptibility to Radical Induced Depolarization*[boxs] , 2005, Journal of Biological Chemistry.

[42]  M. Palacín,et al.  The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. , 2005, Human molecular genetics.

[43]  L. Wan,et al.  PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis , 2005, The EMBO journal.

[44]  K. Mihara,et al.  Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity , 2004, Journal of Cell Science.

[45]  Y. Tsujimoto,et al.  Fzo1, a Protein Involved in Mitochondrial Fusion, Inhibits Apoptosis* , 2004, Journal of Biological Chemistry.

[46]  I. Charles,et al.  Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response , 2004, Nature Cell Biology.

[47]  D. Ron,et al.  Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response , 2004, The Journal of cell biology.

[48]  R. Kaufman,et al.  Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. , 2004, Journal of biochemistry.

[49]  W. Han,et al.  An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression , 2004, Journal of Cell Science.

[50]  D. Scheuner,et al.  Cytoprotection by pre‐emptive conditional phosphorylation of translation initiation factor 2 , 2004, The EMBO journal.

[51]  J. Zierath,et al.  Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism , 2003, The Journal of Biological Chemistry.

[52]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[53]  P. Frachon,et al.  Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. , 2002, Molecular biology of the cell.

[54]  D. Bredesen,et al.  Coupling Endoplasmic Reticulum Stress to the Cell Death Program , 2002, The Journal of Biological Chemistry.

[55]  D. Ron,et al.  Feedback Inhibition of the Unfolded Protein Response by GADD34-Mediated Dephosphorylation of eIF2α , 2001, The Journal of cell biology.

[56]  A. Santel,et al.  Control of mitochondrial morphology by a human mitofusin. , 2001, Journal of cell science.

[57]  T. Aw,et al.  Gadd153 Sensitizes Cells to Endoplasmic Reticulum Stress by Down-Regulating Bcl2 and Perturbing the Cellular Redox State , 2001, Molecular and Cellular Biology.

[58]  D. Bredesen,et al.  An alternative, nonapoptotic form of programmed cell death. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Schapira,et al.  Regulated translation initiation controls stress-induced gene expression in mammalian cells. , 2000, Molecular cell.

[60]  D. Ron,et al.  Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase , 1999, Nature.

[61]  T. Rogers,et al.  The Sarcoplasmic Reticulum Ca2+ Pump: Inhibition by Thapsigargin and Enhancement by Adenovirus‐Mediated Gene Transfera , 1998, Annals of the New York Academy of Sciences.

[62]  J. East,et al.  A diversity of SERCA Ca 2 + pump inhibitors , 2011 .

[63]  D. Wildman,et al.  Proapoptotic BAX and BAK Modulate the Unfolded Protein Response by a Direct Interaction with IRE1a , 2006 .