Nonlinear inelastic analysis of concrete-filled steel tubular slender beam-columns

High strength thin-walled concrete-filled steel tubular (CFST) slender beam-columns may undergo local and global buckling when subjected to biaxial loads, preloads or cyclic loading. The local buckling effects of steel tube walls under stress gradients have not been considered in existing numerical models for CFST slender beam-columns. This thesis presents a systematic development of new numerical models for the nonlinear inelastic analysis of thin-walled rectangular and circular CFST slender beam-columns incorporating the effects of local buckling, concrete confinement, geometric imperfections, preloads, high strength materials, second order and cyclic behavior. In the proposed numerical models, the inelastic behavior of column cross-sections is simulated using the accurate fiber element method. Accurate constitutive laws for confined concrete are implemented in the models. The effects of progressive local buckling are taken into account in the models by using effective width formulas. Axial load-moment-curvature relationships computed from the fiber analysis of sections are used in the column stability analysis to determine equilibrium states. Deflections caused by preloads on the steel tubes arising from the construction of upper floors are included in the analysis of CFST slender columns. Efficient computational algorithms based on the Muller’s method are developed to obtain nonlinear solutions. Analysis procedures are proposed for predicting load-deflection and axial load-moment interaction curves for CFST slender columns under axial load and uniaxial bending, biaxial loads, preloads or axial load and cyclic lateral loading. The numerical models developed are verified by comparisons of computer solutions with existing experimental results and then utilized to undertake extensive parametric studies on the fundamental behavior of CFST slender columns covering a wide range of parameters. The numerical models are shown to be efficient computer simulation tools for designing safe and economical thin-walled CFST slender beam-columns with any steel and concrete strength grades. The thesis presents benchmark numerical results on the behavior of high strength thin-walled CFST slender beam-columns accounting for progressive local buckling effects. These results provide a better understanding of the fundamental behavior of CFST columns and are valuable to structural designers and composite code writers.

[1]  Yan Xiao,et al.  Analytical Studies of Concrete-Filled Circular Steel Tubes under Axial Compression , 2010 .

[2]  Lin-Hai Han,et al.  Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression , 2008 .

[3]  Qing Quan Liang,et al.  High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling , 2012 .

[4]  S. F. Chen,et al.  DESIGN OF BIAXIALLY LOADED SHORT COMPOSITE COLUMNS OF ARBITRARY SECTION , 2001 .

[5]  Qing Quan Liang,et al.  High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior , 2012 .

[6]  N. E. Shanmugam,et al.  CONCRETE-FILLED TUBULAR COLUMNS: PART 2 — COLUMN ANALYSIS , 2004 .

[7]  F. E. Richart,et al.  A study of the failure of concrete under combined compressive stresses , 1928 .

[8]  George D. Hatzigeorgiou,et al.  Numerical model for the behavior and capacity of circular CFT columns, Part I. Theory , 2008 .

[9]  Russell Q. Bridge,et al.  Behaviour of thin-walled steel box sections with or without internal restraint , 1998 .

[10]  Sumei Zhang,et al.  Behaviour of Filled Rectangular Steel HSS Composite Columns under Bi-Axial Bending , 2011 .

[11]  Xianghe Dai,et al.  Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns , 2010 .

[12]  Brian Uy,et al.  Behaviour and design of fabricated high strength steel columns subjected to biaxial bending. Part 1: Experiments , 2006 .

[13]  Qing Quan Liang,et al.  Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation , 2012 .

[14]  N. E. Shanmugam,et al.  State of the art report on steel–concrete composite columns , 2001 .

[15]  J. L. Noland,et al.  Building Code Requirements for Reinforced Concrete (ACI 318-71) in Decision Logic Table Format* , 1976 .

[16]  Dennis Lam,et al.  Axial capacity of circular concrete-filled tube columns , 2004 .

[17]  R Q Bridge Concrete filled steel tubular columns , 1976 .

[18]  Hiroyuki Nakahara,et al.  Behavior of centrally loaded concrete-filled steel-tube short columns , 2004 .

[19]  Ahmed H. Zubydan,et al.  Monotonic and cyclic behavior of concrete-filled steel-tube beam-columns considering local buckling effect , 2011 .

[20]  Tsong Yen,et al.  Experimental study on rectangular CFT columns with high-strength concrete , 2007 .

[21]  J. Mander,et al.  Theoretical stress strain model for confined concrete , 1988 .

[22]  Lin-Hai Han,et al.  Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading , 2003 .

[23]  J. Y. Richard Liew,et al.  Effect of preload on the axial capacity of concrete-filled composite columns , 2009 .

[24]  Hanbin Ge,et al.  Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes , 2001 .

[25]  Bo Wu,et al.  Cyclic behavior of thin-walled square steel tubular columns filled with demolished concrete lumps and fresh concrete , 2012 .

[26]  Brian Uy,et al.  Theoretical study on the post-local buckling of steel plates in concrete-filled box columns , 2000 .

[27]  Ehab Ellobody,et al.  Nonlinear analysis of concrete-filled steel SHS and RHS columns , 2006 .

[28]  Qing Quan Liang High strength circular concrete-filled steel tubular slender beam–columns, Part II: Fundamental behavior , 2011 .

[29]  E. Ellobody,et al.  Experimental investigation of eccentrically loaded fibre reinforced concrete-filled stainless steel tubular columns , 2012 .

[30]  Dennis Lam,et al.  Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns , 2006 .

[31]  Stephen P. Schneider,et al.  Axially Loaded Concrete-Filled Steel Tubes , 1998 .

[32]  Sumei Zhang,et al.  Behavior of Steel Tube and Confined High Strength Concrete for Concrete-Filled RHS Tubes , 2005 .

[33]  N. E. Shanmugam,et al.  An analytical model for thin-walled steel box columns with concrete in-fill , 2002 .

[34]  Brian Uy,et al.  Local buckling of steel plates in concrete-filled thin-walled steel tubular beam–columns , 2007 .

[35]  Brian Uy,et al.  Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects , 2006 .

[36]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating local buckling , 2000 .

[37]  N. E. Shanmugam,et al.  Concrete-filled tubular columns part 1 - Cross-section analysis , 2004 .

[38]  Lin-Hai Han,et al.  Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes , 2003 .

[39]  Richard Sause,et al.  Seismic Behavior and Design of High-Strength Square Concrete-Filled Steel Tube Beam Columns , 2004 .

[40]  Huu-Tai Thai,et al.  Nonlinear inelastic analysis of concrete-filled steel tubular frames , 2011 .

[41]  M. Joyce,et al.  Strength of Eccentrically Loaded Slender Steel Tubular Columns Filled With High-Strength Concrete , 1992 .

[42]  B. V. Rangan,et al.  Tests on slender tubular steel columns filled with high-strength concrete , 1993 .

[43]  N. E. Shanmugam,et al.  Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns , 2002 .

[44]  Lin-Hai Han,et al.  Tests on Stub Columns of Concrete-filled RHS Sections , 2002 .

[45]  Dalin Liu Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns , 2006 .

[46]  Qing Quan Liang High strength circular concrete-filled steel tubular slender beam–columns, Part I: Numerical analysis , 2011 .

[47]  J. Y. Richard Liew,et al.  Ultra-High Strength Concrete Filled Composite Columns for Multi-Storey Building Construction , 2012 .

[48]  Manuel L. Romero,et al.  Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns , 2011 .

[49]  Qing Quan Liang,et al.  Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, part II: Parametric study , 2015 .

[50]  Qing Quan Liang,et al.  Performance-based analysis of concrete-filled steel tubular beam–columns, Part I: Theory and algorithms , 2009 .

[51]  Toshiaki Fujimoto,et al.  BEHAVIOR OF ECCENTRICALLY LOADED CONCRETE-FILLED STEEL TUBULAR COLUMNS , 2004 .

[52]  Ben Young,et al.  Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns , 2006 .

[53]  Jie Yuan,et al.  Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns , 2003 .

[54]  Mohammad AlHamaydeh,et al.  Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs) , 2013 .

[55]  R. P. Johnson,et al.  Design of composite steel and concrete structures , 1993 .

[56]  S. Rizkalla,et al.  Concrete-Filled Steel Tubes Subjected to Axial Compression and Lateral Cyclic Loads , 2004 .

[57]  Kyung-Soo Chung,et al.  Prediction of hysteretic behavior of high-strength square concrete-filled steel tubular columns subjected to eccentric loading , 2012 .

[58]  Mohamed El-Heweity On the performance of circular concrete-filled high strength steel columns under axial loading , 2012 .

[59]  Sherif El-Tawil,et al.  Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art , 2004 .

[60]  Ehab Ellobody,et al.  Numerical modelling of fibre reinforced concrete-filled stainless steel tubular columns , 2013 .

[61]  Lin-Hai Han,et al.  Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads , 2003 .

[62]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[63]  Lin-Hai Han,et al.  Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes , 2012 .

[64]  M. Ala Saadeghvaziri,et al.  State of the Art of Concrete-Filled Steel Tubular Columns , 1997 .

[65]  Brian Uy,et al.  Behaviour and Design of Steel Square Hollow Sections Filled With High Strength Concrete , 2002 .

[66]  Russell Q. Bridge,et al.  DESIGN OF CIRCULAR THIN-WALLED CONCRETE FILLED STEEL TUBES , 2000 .

[67]  Hanbin Ge,et al.  Strength of Concrete‐Filled Thin‐Walled Steel Box Columns: Experiment , 1992 .

[68]  Brian Uy,et al.  Behaviour of short and slender concrete-filled stainless steel tubular columns , 2011 .

[69]  Jerome F. Hajjar,et al.  Representation of Concrete-Filled Steel Tube Cross-Section Strength , 1996 .

[70]  Shinichi Hino,et al.  Modeling of Stress - Strain Relationships for Steel and Concrete in Concrete Filled Circular Steel Tubular Columns , 1996 .

[71]  Tai-Kuang Lee,et al.  Analysis of Composite Beam-Columns under Lateral Cyclic Loading , 2001 .

[72]  Xiaoxiong Zha,et al.  A numerical investigation on the behaviour of concrete-filled steel tubular columns under initial stresses , 2007 .

[73]  Qing Quan Liang Strength and ductility of high strength concrete-filled steel tubular beam-columns , 2009 .

[74]  Q. Liang,et al.  NUMERICAL ANALYSIS OF CIRCULAR CONCRETE-FILLED STEEL TUBULAR SLENDER BEAM-COLUMNS WITH PRELOAD EFFECTS , 2013 .

[75]  Hsuan-Teh Hu,et al.  Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination , 2005 .

[76]  J W Roderick,et al.  LOAD CARRYING CAPACITY OF SIMPLE COMPOSITE COLUMNS , 1969 .

[77]  Gregory G. Deierlein,et al.  Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns , 1995 .

[78]  Jinan Chung,et al.  Prediction of pre- and post-peak behavior of concrete-filled square steel tube columns under cyclic loads using fiber element method , 2007 .

[79]  Jiansheng Fan,et al.  Strength of Concrete Filled Steel Tubular Columns , 2006 .

[80]  Richard Sause,et al.  Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam–columns , 2002 .

[81]  B. Uy,et al.  Behaviour and design of fabricated high strength steel columns subjected to biaxial bending. Part 2: Analysis and design codes , 2006 .

[82]  Qing Quan Liang,et al.  Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading , 2009 .

[83]  Kenji Sakino,et al.  ELASTO-PLASTIC BEHAVIOR OF CONCRETE FILLED SQUARE STEEL TUBULAR BEAM-COLUMNS , 1979 .

[84]  Qing Quan Liang,et al.  Performance-based analysis of concrete-filled steel tubular beam–columns, Part II: Verification and applications , 2009 .

[85]  Richard W. Furlong,et al.  Strength of Steel-Encased Concrete Beam Columns , 1967 .

[86]  Hsuan-Teh Hu,et al.  NONLINEAR ANALYSIS OF AXIALLY LOADED CONCRETE-FILLED TUBE COLUMNS WITH CONFINEMENT EFFECT , 2003 .

[87]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[88]  Lin-Hai Han,et al.  Flexural behaviour of concrete-filled steel tubes , 2004 .

[89]  Wei Liu,et al.  Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression , 2008 .

[90]  M. Bradford,et al.  Local buckling of steel plates in double skin composite panels under biaxial compression and shear , 2004 .

[91]  Cheng-Tzu Thomas Hsu,et al.  Behavior of Biaxially Loaded Concrete-Encased Composite Columns , 1997 .

[92]  Brian Uy,et al.  Strength of slender concrete-filled steel box columns incorporating local buckling , 2002 .

[93]  H. Helena,et al.  Behaviour of concrete-filled steel columns subjected to lateral cyclic loading , 2012 .