Cancer cell aggregate hypoxia visualized in vitro via biocompatible fiber sensors.

[1]  A. Palmer,et al.  Microscale Sensing of Oxygen via Encapsulated Porphyrin Nanofibers: Effect of Indicator and Polymer "Core" Permeability. , 2015, ACS applied materials & interfaces.

[2]  Denis Wirtz,et al.  Hypoxia and the extracellular matrix: drivers of tumour metastasis , 2014, Nature Reviews Cancer.

[3]  O. Wolfbeis,et al.  Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. , 2014, Chemical Society reviews.

[4]  J. Lannutti,et al.  Polydimethylsiloxane Core-Polycaprolactone Shell Nanofibers as Biocompatible, Real-Time Oxygen Sensors. , 2014, Sensors and actuators. B, Chemical.

[5]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[6]  Zhanhu Guo,et al.  Coaxial electrospun nanostructures and their applications , 2013 .

[7]  J. Lannutti,et al.  Rapid response oxygen-sensing nanofibers. , 2013, Materials science & engineering. C, Materials for biological applications.

[8]  Sujit S. Prabhu,et al.  Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes , 2012, Journal of Neuro-Oncology.

[9]  Tahsin Kurc,et al.  The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. , 2012, The American journal of pathology.

[10]  Robert A. Brown,et al.  Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models , 2012, Journal of tissue engineering and regenerative medicine.

[11]  Ruslan I. Dmitriev,et al.  Optical probes and techniques for O2 measurement in live cells and tissue , 2012, Cellular and Molecular Life Sciences.

[12]  S. Liyanarachchi,et al.  Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. , 2011, Neoplasia.

[13]  Michael Landthaler,et al.  2D luminescence imaging of physiological wound oxygenation , 2011, Experimental dermatology.

[14]  J. Lannutti,et al.  Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. , 2011, Acta biomaterialia.

[15]  T. Taxt,et al.  Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma , 2011, Proceedings of the National Academy of Sciences.

[16]  C. Hsieh,et al.  Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. , 2010, Oncology reports.

[17]  A. Baracca,et al.  Hypoxia and mitochondrial oxidative metabolism. , 2010, Biochimica et biophysica acta.

[18]  G. Song,et al.  Role of hypoxia in the hallmarks of human cancer , 2009, Journal of cellular biochemistry.

[19]  Mary Helen Barcellos-Hoff,et al.  Therapeutic targets in malignant glioblastoma microenvironment. , 2009, Seminars in radiation oncology.

[20]  John J Lannutti,et al.  Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. , 2009, Tissue engineering. Part C, Methods.

[21]  S. Lawler,et al.  Glioma Invasion: Mechanisms and Therapeutic Challenges , 2009 .

[22]  M. Zavelevich,et al.  Tumor hypoxia and malignant progression. , 2009, Experimental oncology.

[23]  A. Agrawal Butterfly glioma of the corpus callosum. , 2009, Journal of cancer research and therapeutics.

[24]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[25]  Mark W. Dewhirst,et al.  Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response , 2008, Nature Reviews Cancer.

[26]  J. Lannutti,et al.  Materials selection and residual solvent retention in biodegradable electrospun fibers , 2008 .

[27]  Michael Höckel,et al.  Detection and characterization of tumor hypoxia using pO2 histography. , 2007, Antioxidants & redox signaling.

[28]  J. Lannutti,et al.  Electrospinning for tissue engineering scaffolds , 2007 .

[29]  Daniel J Brat,et al.  'Pseudopalisading' Necrosis in Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pathology, Hypoxia, and Angiogenesis , 2006, Journal of neuropathology and experimental neurology.

[30]  J. Pouysségur,et al.  Hypoxia signalling in cancer and approaches to enforce tumour regression , 2006, Nature.

[31]  Corinne E Griguer,et al.  Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. , 2006, Cancer research.

[32]  James L Tatum,et al.  Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy , 2006, International journal of radiation biology.

[33]  Dmitri B. Papkovsky,et al.  Emerging Applications of Phosphorescent Metalloporphyrins , 2005, Journal of Fluorescence.

[34]  B. Condon,et al.  Measurement of tumor "size" in recurrent malignant glioma: 1D, 2D, or 3D? , 2005, AJNR. American journal of neuroradiology.

[35]  Benjamin A. DeGraff,et al.  Luminescence-Based Oxygen Sensors , 2005 .

[36]  K. Blackwell,et al.  Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? , 2004, The oncologist.

[37]  Y. K. Kim,et al.  Chemical Hypoxia-Induced Cell Death in Human Glioma Cells: Role of Reactive Oxygen Species, ATP Depletion, Mitochondrial Damage and Ca2+ , 2003, Neurochemical Research.

[38]  G. Powis,et al.  Hypoxia inducible factor-1alpha as a cancer drug target. , 2004, Molecular cancer therapeutics.

[39]  G. Powis,et al.  Hypoxia inducible factor as a cancer drug target. , 2003, Current cancer drug targets.

[40]  P. Vaupel,et al.  Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. , 2002, Wiener medizinische Wochenschrift.

[41]  Adrian L. Harris,et al.  Hypoxia — a key regulatory factor in tumour growth , 2002, Nature Reviews Cancer.

[42]  P. Ratcliffe,et al.  Activation of the HIF pathway in cancer. , 2001, Current opinion in genetics & development.

[43]  G. Semenza,et al.  Hypoxia, Clonal Selection, and the Role of HIF-1 in Tumor Progression , 2000, Critical reviews in biochemistry and molecular biology.

[44]  D A Hilton,et al.  Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. , 1999, Cancer research.

[45]  Gelii V. Ponomarev,et al.  Phosphorescent Complexes of Porphyrin Ketones: Optical Properties and Application to Oxygen Sensing , 1995 .

[46]  Ingo Klimant,et al.  Oxygen-Sensitive Luminescent Materials Based on Silicone-Soluble Ruthenium Diimine Complexes , 1995 .

[47]  American society for artificial internal organs. , 1975, Transactions - American Society for Artificial Internal Organs.