Natural Logic and Natural Language Inference

We propose a model of natural language inference which identifies valid inferences by their lexical and syntactic features, without full semantic interpretation. We extend past work in natural logic, which has focused on semantic containment and monotonicity, by incorporating both semantic exclusion and implicativity. Our model decomposes an inference problem into a sequence of atomic edits linking premise to hypothesis; predicts a lexical entailment relation for each edit; propagates these relations upward through a semantic composition tree according to properties of intermediate nodes; and joins the resulting entailment relations across the edit sequence. A computational implementation of the model achieves 70 % accuracy and 89 % precision on the FraCaS test suite. Moreover, including this model as a component in an existing system yields significant performance gains on the Recognizing Textual Entailment challenge.

[1]  Michael Böttner,et al.  A note on existential import , 1988, Stud Logica.

[2]  Johan van Benthem,et al.  The semantics of variety in categorial grammar , 1988 .

[3]  Victor Manual Sánchez Valencia,et al.  Studies on natural logic and categorial grammar , 1991 .

[4]  K. BenthemvanJ.F.A. Language in Action. Categories, Lambdas and Dynamic Logic , 1991 .

[5]  Rob A. van der Sandt,et al.  Presupposition Projection as Anaphora Resolution , 1992, J. Semant..

[6]  Stephen Pulman,et al.  Using the Framework , 1996 .

[7]  Yaroslav Fyodorov,et al.  A Natural Logic Inference System , 2000 .

[8]  Daniel G. Bobrow,et al.  Entailment, intensionality and text understanding , 2003, HLT-NAACL 2003.

[9]  G. Lakoff Linguistics and natural logic , 1970, Synthese.

[10]  Ido Dagan,et al.  Web Based Probabilistic Textual Entailment , 2005 .

[11]  Andrew Hickl,et al.  Recognizing Textual Entailment with LCC’s G ROUNDHOG System , 2005 .

[12]  Jan van Eijck,et al.  Natural Logic for Natural Language , 2007, TbiLLC.

[13]  Raymond J. Mooney,et al.  Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing , 2005 .

[14]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[15]  Johan Bos,et al.  Recognising Textual Entailment with Logical Inference , 2005, HLT.

[16]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[17]  Christopher D. Manning,et al.  Learning to recognize features of valid textual entailments , 2006, NAACL.

[18]  C. Condoravdi,et al.  Computing relative polarity for textual inference , 2006 .

[19]  Eric Yeh,et al.  Learning Alignments and Leveraging Natural Logic , 2007, ACL-PASCAL@ACL.

[20]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[21]  Christopher D. Manning,et al.  Modeling Semantic Containment and Exclusion in Natural Language Inference , 2008, COLING.

[22]  Christopher D. Manning,et al.  A Phrase-Based Alignment Model for Natural Language Inference , 2008, EMNLP.

[23]  Doug Downey,et al.  It’s a Contradiction – no, it’s not: A Case Study using Functional Relations , 2008, EMNLP.

[24]  J.F.A.K. van Benthem A brief history of natural logic [in Chinese] , 2009 .

[25]  Christopher D. Manning,et al.  Natural language inference , 2009 .

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.