Upper bounds in spectral test for multiple recursive random number generators with missing terms
暂无分享,去创建一个
[1] L. R. Moore,et al. An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .
[2] Pierre L'Ecuyer,et al. A search for good multiple recursive random number generators , 1993, TOMC.
[3] U. Dieter,et al. How to calculate shortest vectors in a lattice , 1975 .
[4] Chiang Kao,et al. Several extensively tested random number generators , 1994, Comput. Oper. Res..
[5] Chiang Kao,et al. An exhaustive analysis of prime modulus multiplicative congruential random number generators with modulus smaller than 215 , 1996 .
[6] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[7] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[8] Chiang Kao,et al. Symmetry property of multiplicative congruential random number generator in chi-square test , 1995, Int. J. Comput. Math..
[9] G. Marsaglia. Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[10] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[11] S. K. Park,et al. Random number generators: good ones are hard to find , 1988, CACM.
[12] G. S. Fishman. Multiplicative congruential random number generators with modulus 2^{}: an exhaustive analysis for =32 and a partial analysis for =48 , 1990 .
[13] R. R. Coveyou,et al. Fourier Analysis of Uniform Random Number Generators , 1967, JACM.