Numerical integration of 2‐D integrals based on local bivariate C1 quasi‐interpolating splines
暂无分享,去创建一个
[1] Giovanni Monegato,et al. Numerical evaluation of hypersingular integrals , 1994 .
[2] G. Evans. Practical Numerical Integration , 1993 .
[3] F. Rizzo,et al. A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations , 1992 .
[4] Giovanni Monegato,et al. The numerical evaluation of a 2-D Cauchy principal value integral arising in boundary integral equation methods , 1994 .
[5] P. Theocaris,et al. On the numerical evaluation of two‐dimensional principal value integrals , 1980 .
[6] Cui Jin-Tai,et al. ON A BIVARIATE B-SPLINE BASIS , 1984 .
[7] C. Dagnino,et al. Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators , 1996 .
[8] P. Zwart. Multivariate Splines with Nondegenerate Partitions , 1973 .
[9] P. Rabinowitz. Numerical integration based on approximating splines , 1990 .
[10] Ren-Hong Wang,et al. Multivariate B-splines on triangulated rectangles☆ , 1983 .
[11] B. Irons,et al. Over-relaxation and subspace iteration , 1979 .
[12] Ayse Alaylioglu,et al. Product integration of logarithmic singular integrands based on cubic splines , 1984 .
[13] Catterina Dagnino,et al. Product integration of singular integrands using quasi-interpolatory splines , 1997 .
[14] Massimo Guiggiani,et al. A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method , 1990 .