A general spectral method for the numerical simulation of one-dimensional interacting fermions

is work introduces a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. e approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An e›cient Matlab program for the assembly of the stišness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. is program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e. g., for verifying the accuracy of multi-particle approximations such as Hartree–Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the timedependent Schrödinger equation.

[1]  Sverker Edvardsson,et al.  A program for accurate solutions of two-electron atoms , 2005, Comput. Phys. Commun..

[2]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[3]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[4]  Dirk Laurie,et al.  Computation of Gauss-type quadrature formulas , 2001 .

[5]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[6]  D. A. Ritchie,et al.  Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid , 2009, Science.

[7]  S. Zhou,et al.  On approximation by trigonometric Lagrange interpolating polynomials , 1989, Bulletin of the Australian Mathematical Society.

[8]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[9]  F. Fernández,et al.  One-dimensional oscillator in a box , 2009 .

[10]  Martin J. Mohlenkamp,et al.  Preliminary results on approximating a wavefunction as an unconstrained sum of Slater determinants , 2007 .

[11]  H. Kohler Exact diagonalization of 1D interacting spinless Fermions , 2007, 0801.0132.

[12]  D. Blume,et al.  BEC-BCS Crossover of a Trapped Two-Component Fermi Gas with Unequal Masses , 2007, 0705.0671.

[13]  Shu Chen,et al.  Ground-state properties of a few-boson system in a one-dimensional hard-wall split potential , 2008, 0804.2759.

[14]  Harry Yserentant,et al.  Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.

[15]  Anton Z. Capri,et al.  Nonrelativistic Quantum Mechanics , 1985 .

[16]  S. Flügge,et al.  Practical Quantum Mechanics , 1976 .

[17]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[18]  A. Hora,et al.  Quantum Probability and Spectral Analysis of Graphs , 2007 .

[19]  J. J. Sakurai,et al.  Advanced Quantum Mechanics , 1969 .

[20]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[21]  Spin-Charge Separation and Localization in One Dimension , 2005 .

[22]  M. Griebel,et al.  Sparse grids for the Schrödinger equation , 2007 .

[23]  Wolfgang Hackbusch,et al.  The Efficient Computation of Certain Determinants Arising in the Treatment of Schrödinger's Equations , 2001, Computing.