Van der Waals Density Functional Theory with Applications

The details of a density functional that includes van der Waals (vdW) interactions are presented. In particular we give some key steps of the transition from a form for fully planar systems to a procedure for realistic layered compounds that have planar symmetry only on large-distance scales, and which have strong covalent bonds within the layers. It is shown that the random-phase approximation of that original functional can be replaced by an approximation that is exact at large separation between vdW interacting fragments and seamless as the fragments merge. An approximation to the latter which renders the functional easily applicable and which preserves useful accuracy in both limits and in between is given. We report additional data from applications to forms of graphite, boron nitride, and molybdenum sulfide not reported in our previous communication.(C) 2004 Wiley Periodicals, Inc.

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  P. Hyldgaard,et al.  Van der Waals interactions of parallel and concentric nanotubes , 2003 .

[3]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[4]  Max S. Marshall,et al.  The Ph.D. , 1962 .

[5]  J. Nørskov,et al.  One-dimensional metallic edge states in MoS2. , 2001, Physical review letters.

[6]  B. Sernelius,et al.  Fractional van der Waals interaction between thin metallic films , 2000 .

[7]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[8]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[9]  P. Feibelman Surface electromagnetic fields , 1982 .

[10]  John P. Perdew,et al.  Exchange-correlation energy of a metallic surface: Wave-vector analysis , 1977 .

[11]  Georg Kresse,et al.  Ab initio calculation of the lattice dynamics and phase diagram of boron nitride , 1999 .

[12]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[13]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[14]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  D. Langreth,et al.  Density functional theory including Van Der Waals forces , 1995 .

[17]  Eleni Ziambaras,et al.  Theory for structure and bulk modulus determination , 2003, cond-mat/0304075.

[18]  Langreth Macroscopic approach to the theory of reflectivity. , 1989, Physical review. B, Condensed matter.

[19]  A. Mazur,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001 .

[20]  P. Hyldgaard,et al.  Hard numbers on soft matter , 2003 .

[21]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[22]  Bradley P. Dinte,et al.  Constraint satisfaction in local and gradient susceptibility approximations: Application to a van der Waals density functional. , 1996, Physical review letters.

[23]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[24]  N. S. Barnett,et al.  Private communication , 1969 .

[25]  W. Kohn,et al.  Van der Waals interaction between an atom and a solid surface , 1976 .

[26]  Jun Wang,et al.  SUCCESSFUL TEST OF A SEAMLESS VAN DER WAALS DENSITY FUNCTIONAL , 1999 .

[27]  Krzysztof Szalewicz,et al.  Dispersion energy from density-functional theory description of monomers. , 2003, Physical review letters.

[28]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[29]  M. Gell-Mann,et al.  Correlation Energy of an Electron Gas at High Density , 1957 .

[30]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[31]  P. Åstrand,et al.  Zero-point vibrational contributions to fluorine shieldings in organic molecules , 2003 .

[32]  John P. Perdew,et al.  The exchange-correlation energy of a metallic surface , 1975 .

[33]  Interaction energy for a pair of quantum wells , 1998 .

[34]  Georg Jansen,et al.  The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential , 2003 .

[35]  J. Nørskov,et al.  Atomic and electronic structure of MoS2 nanoparticles , 2003 .

[36]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[37]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .