Continuous $-1$ Hypergeometric Orthogonal Polynomials
暂无分享,去创建一个
[1] T. Koornwinder. Charting the $q$-Askey scheme. II. The $q$-Zhedanov scheme , 2022, 2209.07995.
[2] T. Koornwinder. Charting the $q$-Askey scheme , 2021, 2108.03858.
[3] L. Verde-Star. A unified construction of all the hypergeometric and basic hypergeometric families of orthogonal polynomial sequences , 2020, 2002.07932.
[4] L. Vinet,et al. The non-symmetric Wilson polynomials are the Bannai-Ito polynomials , 2015, 1507.02995.
[5] L. Vinet,et al. A \Continuous" Limit of the Complementary Bannai{Ito Polynomials: Chihara Polynomials , 2013, 1309.7235.
[6] L. Vinet,et al. Bispectrality of the Complementary Bannai-Ito Polynomials , 2012, 1211.2461.
[7] L. Vinet,et al. Dual -1 Hahn polynomials: "classical" polynomials beyond the Leonard duality , 2011, 1108.0132.
[8] L. Vinet,et al. Dunkl shift operators and Bannai-Ito polynomials , 2011, 1106.3512.
[9] L. Vinet,et al. A ‘missing’ family of classical orthogonal polynomials , 2010, 1011.1669.
[10] L. Vinet,et al. A limit $q=-1$ for the big q-Jacobi polynomials , 2010, 1011.1429.
[11] Rene F. Swarttouw,et al. Hypergeometric Orthogonal Polynomials , 2010 .
[12] S. Belmehdi,et al. Generalized Gegenbauer orthogonal polynomials , 2001 .
[13] Charles F. Dunkl,et al. Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.
[14] M. Anshelevich,et al. Introduction to orthogonal polynomials , 2003 .
[15] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .