Continuous $-1$ Hypergeometric Orthogonal Polynomials

The study of − 1 orthogonal polynomials viewed as q → − 1 limits of the q -orthogonal polynomials is pursued. This paper present the continuous polynomials part of the − 1 analog of the q -Askey scheme. A compendium of the properties of all the continuous − 1 hypergeometric polynomials and their connections is provided.

[1]  T. Koornwinder Charting the $q$-Askey scheme. II. The $q$-Zhedanov scheme , 2022, 2209.07995.

[2]  T. Koornwinder Charting the $q$-Askey scheme , 2021, 2108.03858.

[3]  L. Verde-Star A unified construction of all the hypergeometric and basic hypergeometric families of orthogonal polynomial sequences , 2020, 2002.07932.

[4]  L. Vinet,et al.  The non-symmetric Wilson polynomials are the Bannai-Ito polynomials , 2015, 1507.02995.

[5]  L. Vinet,et al.  A \Continuous" Limit of the Complementary Bannai{Ito Polynomials: Chihara Polynomials , 2013, 1309.7235.

[6]  L. Vinet,et al.  Bispectrality of the Complementary Bannai-Ito Polynomials , 2012, 1211.2461.

[7]  L. Vinet,et al.  Dual -1 Hahn polynomials: "classical" polynomials beyond the Leonard duality , 2011, 1108.0132.

[8]  L. Vinet,et al.  Dunkl shift operators and Bannai-Ito polynomials , 2011, 1106.3512.

[9]  L. Vinet,et al.  A ‘missing’ family of classical orthogonal polynomials , 2010, 1011.1669.

[10]  L. Vinet,et al.  A limit $q=-1$ for the big q-Jacobi polynomials , 2010, 1011.1429.

[11]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[12]  S. Belmehdi,et al.  Generalized Gegenbauer orthogonal polynomials , 2001 .

[13]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[14]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[15]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .