Vibration data analysis for a commercial aircraft : Multivariable vibration data from an aircraft is analyzed using modern system identification tools. The identified linear vibrational model accurately describes the measured motion

Using data from extensive vibrational tests of the new Saab 2000 aircraft, a combined method for vibration analysis is studied. The method is based on a realization algorithm followed by standard prediction error methods (PEM). We find that the realization algorithm gives good initial model parameter estimates that can be further improved by the use of PEM. We use the method to get insights into the vibrational eigenmodes.

[1]  Richard W. Longman,et al.  Comparison Of Several System Identification Methods For Flexible Structures , 1993 .

[2]  L. Silverman Realization of linear dynamical systems , 1971 .

[3]  A. Benveniste,et al.  STATE SPACE FORMULATION : A SOLUTION TO MODAL PARAMETER ESTIMATION , 1991 .

[4]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[5]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  George V. Moustakides,et al.  Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems , 1987, Autom..

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  H. Zeiger,et al.  Approximate linear realizations of given dimension via Ho's algorithm , 1974 .

[9]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[10]  Richard W. Longman,et al.  Comparison of several system identification methods for flexible structures , 1991 .

[11]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[12]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[13]  A. Krall Applied Analysis , 1986 .

[14]  A. Benveniste,et al.  Single sample modal identification of a nonstationary stochastic process , 1985, IEEE Transactions on Automatic Control.

[15]  B. De Moor,et al.  The fit of a sum of exponentials to noisy data , 1987 .

[16]  Maurice Goursat,et al.  In situ damage monitoring in vibration mechanics: diagnostics and predictive maintenance , 1993 .

[17]  Torsten Söderström,et al.  Model-structure selection by cross-validation , 1986 .

[18]  T. McKelvey Identification of State-Space Models from Time and Frequency Data , 1995 .

[19]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[20]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[21]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .