Forcing Relations for Homoclinic Orbits of the Smale Horseshoe Map

An important problem in the dynamics of surface homeomorphisms is determining the forcing relation between orbits. The forcing relation between periodic orbits can be computed using existing algorithms. Here we consider forcing relations between homoclinic orbits. We outline a general procedure for computing the forcing relation and apply this to compute the equivalence and forcing relations for homoclinic orbits of the Smale horseshoe map.

[1]  Robert L. Devaney,et al.  Shift automorphisms in the Hénon mapping , 1979, Hamiltonian Dynamical Systems.

[2]  M. Misiurewicz,et al.  Cycles for disk homeomorphisms and thick trees , 1993 .

[3]  Pieter Collins Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits , 2002 .

[4]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[5]  P. Boyland Rotation sets and monotone periodic orbits for annulus homeomorphisms , 1992 .

[6]  A. Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .

[7]  Jérôme E. Los,et al.  Pseudo-Anosov Maps and Invariant Train Tracks in the Disc: A Finite Algorithm , 1993 .

[8]  J. M. T. Thompson,et al.  Knot-types and bifurcation sequences of homoclinic and transient orbits of a single-degree-of-freedom driven oscillator , 1994 .

[9]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[10]  H. T. Riele,et al.  Centrum Voor Wiskunde En Informatica , 1996 .

[11]  M. Handel Global shadowing of pseudo-Anosov homeomorphisms , 1985, Ergodic Theory and Dynamical Systems.

[12]  Braid forcing and star-shaped train tracks , 2002, math/0204115.

[13]  David Ruelle,et al.  An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps , 1994, Ergodic Theory and Dynamical Systems.

[14]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[15]  Entropy-minimizing models of surface diffeomorphisms relative to homoclinic and heteroclinic orbits , 2003, math/0311187.

[16]  Mladen Bestvina,et al.  Train-tracks for surface homeomorphisms , 1995 .

[17]  Vered Rom-Kedar,et al.  Homoclinic tangles-classification and applications , 1994 .

[18]  M. Handel A FIXED-POINT THEOREM FOR PLANAR HOMEOMORPHISMS , 1999 .

[19]  Pieter Collins,et al.  Symbolic Dynamics from homoclinic tangles , 2002, Int. J. Bifurc. Chaos.

[20]  Toby Hall,et al.  The Forcing Relation for Horseshoe Braid Types , 2002, Exp. Math..

[21]  Pruning fronts and the formation of horseshoes , 1997, Ergodic Theory and Dynamical Systems.

[22]  Isotopy Stability of Dynamics on Surfaces , 1999, math/9904160.