Reciprocity sheaves

We start developing a notion of reciprocity sheaves, generalizing Voevodsky’s homotopy invariant presheaves with transfers which were used in the construction of his triangulated categories of motives. We hope that reciprocity sheaves will eventually lead to the definition of larger triangulated categories of motivic nature, encompassing non-homotopy invariant phenomena.

[1]  B. Kahn Motifs et adjoints , 2015, Rendiconti del Seminario Matematico della Università di Padova.

[2]  F. Binda,et al.  RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS , 2014, Journal of the Institute of Mathematics of Jussieu.

[3]  S. Saito,et al.  Chow group of $0$-cycles with modulus and higher-dimensional class field theory , 2013, 1304.4400.

[4]  Takao Yamazaki,et al.  Motives with modulus , 2015, 1511.07124.

[5]  R. Sujatha,et al.  Birational motives, II: Triangulated birational motives , 2015, 1506.08385.

[6]  V. Voevodsky Triangulated categories of motives over a field , 2015 .

[7]  Takao Yamazaki,et al.  Voevodsky’s motives and Weil reciprocity , 2011, 1108.2764.

[8]  B. Kahn Foncteurs de Mackey \`a r\'eciprocit\'e , 2012, 1210.7577.

[9]  Kay Rulling,et al.  K-groups of reciprocity functors , 2012, 1209.1217.

[10]  V. Voevodsky 3. Cohomological Theory of Presheaves with Transfers , 2011 .

[11]  Kay Rulling,et al.  Hodge-Witt cohomology and Witt-rational singularities , 2011, Documenta Mathematica.

[12]  L. Barbieri-Viale,et al.  On the derived category of 1-motives, I , 2007, 0706.1498.

[13]  Kay Rulling,et al.  Higher direct images of the structure sheaf in positive characteristic , 2009, 0911.3599.

[14]  H. Russell,et al.  Albanese varieties with modulus over a perfect field , 2009, 0902.2533.

[15]  Kay Rülling The generalized de Rham-Witt complex over a field is a complex of zero-cycles , 2007 .

[16]  F. Déglise Algebraic Cycles and Motives: Correspondences and Transfers , 2007 .

[17]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[18]  C. Weibel,et al.  Lecture Notes On Motivic Cohomology , 2006 .

[19]  Tam'as Szamuely,et al.  On the Albanese map for smooth quasi-projective varieties , 2000, math/0009017.

[20]  Vladimir Voevodsky,et al.  Cycles, Transfers And Motivic Homology Theories , 2000 .

[21]  A. Suslin,et al.  Relative cycles and Chow sheaves , 1999 .

[22]  A. Suslin,et al.  Singular homology of abstract algebraic varieties , 1996 .

[23]  S. L. Kleiman INTERSECTION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 2) , 1985 .

[24]  Daniel R. Grayson Universal exactness in algebraic K-theory , 1985 .

[25]  M. Gros Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique , 1985 .

[26]  T. Ekedahl On the multiplicative properties of the de rham-witt complex. II. , 1984 .

[27]  T. Ekedahl On the multiplicative properties of the de Rham—Witt complex. I , 1984 .

[28]  J. Colliot-Thélène,et al.  TORSION DANS LE GROUPE DE CHOW DE CODIMENSION DEUX , 1983 .

[29]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[30]  Jean-Pierre Serre,et al.  Groupes algébriques et corps de classes , 1975 .

[31]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique : II. Étude globale élémentaire de quelques classes de morphismes , 1961 .

[32]  V. Voevodsky Cohomological theory of presheaves with transfers , 2022 .