Voronoi Diagram in the Laguerre Geometry and its Applications
暂无分享,去创建一个
Hiroshi Imai | Kazuo Murota | Masao Iri | M. Iri | H. Imai | K. Murota
[1] D. T. Lee,et al. Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..
[2] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Chak-Kuen Wong,et al. Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..
[4] D. T. Lee,et al. Location of Multiple Points in a Planar Subdivision , 1979, Inf. Process. Lett..
[5] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[6] David G. Kirkpatrick,et al. Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[7] D. Faddeev,et al. Computational Methods of Linear Algebra , 1959 .
[8] Frank Harary,et al. Graph Theory , 2016 .
[9] Richard J. Lipton,et al. On the Complexity of Computations under Varying Sets of Primitives , 1975, J. Comput. Syst. Sci..
[10] Frank K. Hwang,et al. An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.
[11] Kevin Q. Brown. Geometric transforms for fast geometric algorithms , 1979 .
[12] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[13] R. E. Miles. The Random Division of Space , 1972 .