Extended results on robust state estimation and fault detection

A common requirement implicit in the current methods for the design of robust state estimators and robust fault detection filters is that the first Markov matrix must be non-zero, and indeed, full rank. We relax both of these restrictions in this paper to allow the applicability to a wider range of systems. The extended results are then applied to an aircraft fault detection for which the restrictive condition is not satisfied.

[1]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[2]  F. Fairman,et al.  Disturbance decoupled observer design via singular value decomposition , 1984 .

[3]  Shao-Kung Chang,et al.  Design of general structured observers for linear systems with unknown inputs , 1997 .

[4]  Christopher Edwards,et al.  Sliding mode observers for robust detection and reconstruction of actuator and sensor faults , 2003 .

[5]  P. Kudva,et al.  Observers for linear systems with unknown inputs , 1980 .

[6]  C. Edwards,et al.  An LMI approach for designing sliding mode observers for fault detection and isolation , 2001, 2001 European Control Conference (ECC).

[7]  S. Spurgeon,et al.  On the development of discontinuous observers , 1994 .

[8]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[9]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[10]  Ali Saberi,et al.  Optimal fault signal estimation , 2002 .

[11]  Jie Chen,et al.  Robustness in quantitative model-based fault diagnosis , 1992 .

[12]  Panos J. Antsaklis,et al.  Linear Systems , 1997 .

[13]  M. Hou,et al.  Design of observers for linear systems with unknown inputs , 1992 .

[14]  Mehrdad Saif,et al.  A new approach to robust fault detection and identification , 1993 .

[15]  Sarah K. Spurgeon,et al.  Sliding mode observers for fault detection and isolation , 2000, Autom..

[16]  Ali Saberi,et al.  Exact, almost and optimal input decoupled (delayed) observers , 2000 .

[17]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .