Tailoring of the Interfacial Dzyaloshinskii-Moriya Interaction in Perpendicularly Magnetized Epitaxial Multilayers by Crystal Engineering.

The interplay between the interfacial crystalline structure and Dzyaloshinskii-Moriya interaction (DMI) was investigated by Fe insertion in epitaxial Pt/Co/Ir perpendicular magnetized multilayers. The experimental results with the support of first-principles calculation indicate that the Fe/Ir interface exhibits a positive interfacial DMI (iDMI) originating from the fcc crystalline structure inserted by 2 monolayers (ML) Fe, while a negative one from the structure with a layer shifting of 1-ML Fe insertion. The total iDMI of the multilayers increases (decreases) due to the additive enhancement (competitive counteraction) between the iDMI of Fe/Ir and Pt/Co interfaces. Comparing the iDMI of single-crystalline and textured multilayers, the iDMI of multilayers is found to be particularly sensitive to the crystallinity nearby the heterointerfaces. This work is of vital importance to reveal a deeper insight into the physical mechanism of the iDMI and provides a viable strategy for tailoring the iDMI of the multilayers by crystal engineering.

[1]  Avik W. Ghosh,et al.  Interplay between Spin‐Orbit Torques and Dzyaloshinskii‐Moriya Interactions in Ferrimagnetic Amorphous Alloys , 2021, Advanced science.

[2]  I. Mertig,et al.  Colossal topological Hall effect at the transition between isolated and lattice-phase interfacial skyrmions , 2021, Nature Communications.

[3]  M. Raju,et al.  Microwave resonances of magnetic skyrmions in thin film multilayers , 2021, Nature Communications.

[4]  F. Stobiecki,et al.  Thickness dependence of interfacial Dzyaloshinskii-Moriya interaction, magnetic anisotropy and spin waves damping in Pt/Co/Ir and Ir/Co/Pt trilayers , 2021 .

[5]  A. Fert,et al.  Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient , 2021, Nature Communications.

[6]  S. Blügel,et al.  Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface , 2020, Science Advances.

[7]  Kang L. Wang,et al.  Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin-Orbit Torque. , 2020, Nano letters.

[8]  Sulin Zhang,et al.  Interfacial Dzyaloshinskii-Moriya interaction between ferromagnetic insulator and heavy metal , 2020 .

[9]  Arata Tsukamoto,et al.  Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys , 2019, Nature Materials.

[10]  L. Register,et al.  The microscopic origin of DMI in magnetic bilayers and prediction of giant DMI in new bilayers , 2019, npj Computational Materials.

[11]  Y. Nakatani,et al.  Electric field control of magnetic domain wall motion via modulation of the Dzyaloshinskii-Moriya interaction , 2018, Science Advances.

[12]  A. Sadovnikov,et al.  Enhanced interfacial Dzyaloshinskii-Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films , 2018 .

[13]  Tetsuya Nakamura,et al.  Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity , 2018, Nature Communications.

[14]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[15]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[16]  S. Heinze,et al.  Engineering skyrmions in transition-metal multilayers for spintronics , 2015, Nature Communications.

[17]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[18]  S. Heinze,et al.  Tailoring magnetic skyrmions in ultra-thin transition metal films , 2014, Nature Communications.

[19]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[20]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[21]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[22]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[23]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[24]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[25]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[26]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[27]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[28]  K. Coffey,et al.  Angular dependence of the switching field of thin-film longitudinal and perpendicular magnetic recording media , 2002 .

[29]  F. Schumacher On the modification of the Kondorsky function , 1991 .

[30]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .