Numerical Integration Techniques Based on a Geometric View and Application to Molecular Dynamics Simulations
暂无分享,去创建一个
[1] Preparing relaxed systems of amorphous polymers by multiscale simulation: Application to cellulose , 2004 .
[2] William G. Hoover,et al. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .
[3] G. S. Ezra. Reversible measure-preserving integrators for non-Hamiltonian systems. , 2006, The Journal of chemical physics.
[4] G. Ciccotti,et al. Hoover NPT dynamics for systems varying in shape and size , 1993 .
[5] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[6] Haruki Nakamura,et al. Numerical examination of the extended phase‐space volume‐preserving integrator by the Nosé‐Hoover molecular dynamics equations , 2009, J. Comput. Chem..
[7] R. McLachlan,et al. The accuracy of symplectic integrators , 1992 .
[8] G.R.W. Wuispel,et al. Volume-preserving integrators , 1995 .
[9] Energy Conserving, Liouville, and Symplectic Integrators , 1995 .
[10] Feng Kang,et al. Volume-preserving algorithms for source-free dynamical systems , 1995 .
[11] William G. Hoover,et al. Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .
[12] M. Tuckerman,et al. Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble , 2000 .
[13] Mark E. Tuckerman,et al. Explicit reversible integrators for extended systems dynamics , 1996 .
[14] G. R. W. Quispel,et al. Volume-preserving integrators have linear error growth , 1998 .
[15] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[16] C. DeWitt-Morette,et al. Analysis, manifolds, and physics , 1977 .
[17] Denis J. Evans,et al. Computer ‘‘experiment’’ for nonlinear thermodynamics of Couette flow , 1983 .
[18] Wolfgang Bauer,et al. Canonical ensembles from chaos , 1990 .
[19] Mark E. Tuckerman,et al. Reversible multiple time scale molecular dynamics , 1992 .
[20] M. Klein,et al. Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .
[21] Lichang Wang,et al. Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy , 2012 .
[22] Haruki Nakamura,et al. Tsallis dynamics using the Nosé-Hoover approach. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] William G. Hoover,et al. Kinetic moments method for the canonical ensemble distribution , 1996 .
[24] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[25] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[26] W. G. Hoover. Computational Statistical Mechanics , 1991 .
[27] H. Berendsen,et al. Molecular dynamics with coupling to an external bath , 1984 .
[28] Shuichi Nosé,et al. Constant Temperature Molecular Dynamics Methods , 1991 .
[29] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[30] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[31] Haruki Nakamura,et al. Efficiency in the Generation of the Boltzmann−Gibbs Distribution by the Tsallis Dynamics Reweighting Method , 2004 .
[32] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[33] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[34] T. Schlick. Molecular modeling and simulation , 2002 .