Numerical Integration Techniques Based on a Geometric View and Application to Molecular Dynamics Simulations

In this chapter we address numerical integration techniques of ordinary differential equation (ODE), especially that for molecular dynamics (MD) simulation. Since most of the fundamental equations of motion in MD are represented by nonlinear ODEs with many degrees of freedom, numerical integration becomes essential to solve the equations for analyzing the properties of a target physical system. To enhance the molecular simulation performance, we demonstrate two techniques for numerically integrating the ODE. The first object we present is an invariant function, viz., a conserved quantity along a solution, of a given ODE. The second one is a numerical integrator itself, which numerically solves the ODE by capturing certain geometric properties of the ODE.

[1]  Preparing relaxed systems of amorphous polymers by multiscale simulation: Application to cellulose , 2004 .

[2]  William G. Hoover,et al.  High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .

[3]  G. S. Ezra Reversible measure-preserving integrators for non-Hamiltonian systems. , 2006, The Journal of chemical physics.

[4]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[5]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[6]  Haruki Nakamura,et al.  Numerical examination of the extended phase‐space volume‐preserving integrator by the Nosé‐Hoover molecular dynamics equations , 2009, J. Comput. Chem..

[7]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[8]  G.R.W. Wuispel,et al.  Volume-preserving integrators , 1995 .

[9]  Energy Conserving, Liouville, and Symplectic Integrators , 1995 .

[10]  Feng Kang,et al.  Volume-preserving algorithms for source-free dynamical systems , 1995 .

[11]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[12]  M. Tuckerman,et al.  Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble , 2000 .

[13]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[14]  G. R. W. Quispel,et al.  Volume-preserving integrators have linear error growth , 1998 .

[15]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[16]  C. DeWitt-Morette,et al.  Analysis, manifolds, and physics , 1977 .

[17]  Denis J. Evans,et al.  Computer ‘‘experiment’’ for nonlinear thermodynamics of Couette flow , 1983 .

[18]  Wolfgang Bauer,et al.  Canonical ensembles from chaos , 1990 .

[19]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[20]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[21]  Lichang Wang,et al.  Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy , 2012 .

[22]  Haruki Nakamura,et al.  Tsallis dynamics using the Nosé-Hoover approach. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  William G. Hoover,et al.  Kinetic moments method for the canonical ensemble distribution , 1996 .

[24]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[25]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[26]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[27]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[28]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[29]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[30]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[31]  Haruki Nakamura,et al.  Efficiency in the Generation of the Boltzmann−Gibbs Distribution by the Tsallis Dynamics Reweighting Method , 2004 .

[32]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[33]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[34]  T. Schlick Molecular modeling and simulation , 2002 .