Comparison among evolutionary algorithms and classical optimization methods for circuit design problems

This work concerns the comparison of evolutionary algorithms and standard optimization methods on two circuit design problems: the parameter extraction of device circuit model and the multi-objective optimization of an operational transconductance amplifier. We compare standard optimization techniques and evolutionary algorithms in terms of quality of the solutions and computational effort, that is, objective function evaluations needed to compute them. The experimental results obtained show as standard techniques are robust with respect evolutionary algorithms, while the latter are more effective in terms of the standard metrics and function calls. In particular for the multiobjective problem, the observed Pareto front determined by evolutionary algorithms has a better spread of solutions with a larger number of nondominated solutions with respect to the standard multi-objective techniques

[1]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[2]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[3]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[4]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  William B. Langdon Pareto, Population Partitioning, Price and Genetic Programming , 1995 .

[7]  John R. Koza,et al.  Genetic Programming II , 1992 .

[8]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[9]  K Joardar,et al.  Genetic Algorithm Based MOSFET Model Parameter Extraction , 2000 .

[10]  Emil Hjalmarson Studies on Design Automation of Analog Circuits - the Design Flow , 2003 .

[11]  John R. Koza,et al.  Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[12]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[13]  A. Galluzzo,et al.  Small-signal and noise modeling of submicrometer self aligned bipolar transistor , 1998, Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194).

[14]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .