The Abundance of Carbon Dioxide Ice in the Quiescent Intracloud Medium

We present new observations with the Infrared Spectrograph on board the Spitzer Space Telescope of the solid-CO2 absorption feature near 15 μm in the spectra of eight field stars behind the Taurus complex of dark clouds. Solid CO2 is detected in six lines of sight. New results are combined with previous data to investigate the correlation of CO2 column density with those of other major ice constituents (H2O and CO) and with extinction. CO2 is shown to display a "threshold extinction" effect, i.e., a minimum extinction (A0 = 4.3 ± 1.0 mag) required for detection, behavior similar to that previously reported for H2O and CO. We find a particularly tight correlation through the origin between N(CO2) and N(H2O), confirming that these species form in tandem and coexist in the same (polar) ice layer on the grains. The observed composition of the mantles is broadly consistent with the predictions of photochemical models with diffusive surface chemistry proposed by Ruffle & Herbst. Comparison of our results for Taurus with published data for Serpens indicates significant differences in ice composition consistent with enhanced CO2 production in the latter cloud. Our results also place constraints on the distribution of elemental oxygen between ices and other potential reservoirs. Assuming a constant N(H) to extinction ratio, we show that ~65% of the solar O abundance is accounted for by summing the contributions of ices (~26%), refractory dust (~30%) and gas-phase CO (~9%). If the Sun is an appropriate standard for the interstellar medium, the "missing" oxygen may reside in atomic O I gas and/or (undetected) O2 within the ices.

[1]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[2]  E. Dartois,et al.  Spitzer's large CO_2 ice detection toward the L723 class 0 object , 2005 .

[3]  S. Schlemmer,et al.  Infrared spectroscopy of solid CO-CO2 mixtures and layers , 2005, astro-ph/0511815.

[4]  E. Bergin,et al.  Spitzer Observations of CO2 Ice toward Field Stars in the Taurus Molecular Cloud , 2005, astro-ph/0505345.

[5]  C. Dullemond,et al.  Ices in the Edge-on Disk CRBR 2422.8-3423: Spitzer Spectroscopy and Monte Carlo Radiative Transfer Modeling , 2004, astro-ph/0411367.

[6]  R. Indebetouw,et al.  The Wavelength Dependence of Interstellar Extinction from 1.25 to 8.0 μm Using GLIMPSE Data , 2004, astro-ph/0406403.

[7]  L. Hartmann,et al.  Mid-infrared Spectra of Class I Protostars in Taurus , 2004 .

[8]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[9]  E. Herbst,et al.  Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry , 2004 .

[10]  D. Padgett,et al.  Spitzer Space Telescope Spectroscopy of Ices toward Low-Mass Embedded Protostars , 2004, astro-ph/0406298.

[11]  L. Decin,et al.  MARCS: Model Stellar Atmospheres and Their Application to the Photometric Calibration of the Spitzer Space Telescope Infrared Spectrograph (IRS) , 2004, astro-ph/0406104.

[12]  A. A. Kaas,et al.  The young stellar population in the Serpens Cloud Core: An ISOCAM survey ⋆ ⋆⋆ , 2004, astro-ph/0404439.

[13]  A. Tielens,et al.  Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .

[14]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[15]  P. Bernath,et al.  Low upper limits on the O2 abundance from the Odin satellite , 2003 .

[16]  C. Vastel,et al.  Infrared Space Observatory Long Wavelength Spectrometer Observations of C+ and O0 Lines in Absorption toward Sagittarius B2 , 2002 .

[17]  E. Bergin,et al.  Sensitive Limits on the Water Abundance in Cold Low-Mass Molecular Cores , 2002, astro-ph/0211505.

[18]  E. Herbst,et al.  The abundance of gaseous H$_{\mathsf 2}$O and O$_{\mathsf 2}$ in cores of dense interstellar clouds , 2002 .

[19]  E. Bergin,et al.  Tentative Detection of Molecular Oxygen in the ρ Ophiuchi Cloud , 2002 .

[20]  J. Chiar,et al.  Solid Carbon Dioxide in Regions of Low-Mass Star Formation , 2001 .

[21]  V. Pirronello,et al.  Formation of Carbon Dioxide by Surface Reactions on Ices in the Interstellar Medium , 2001 .

[22]  E. Herbst,et al.  New models of interstellar gas–grain chemistry – III. Solid CO2 , 2001 .

[23]  P. Gerakines,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[24]  T. Kerr,et al.  A Direct Measurement of the CO Depletion in the Elias 18 Circumstellar Disk , 2001 .

[25]  M. Harwit,et al.  Implications of Submillimeter Wave Astronomy Satellite Observations for Interstellar Chemistry and Star Formation , 2000 .

[26]  M. Harwit,et al.  O2 in Interstellar Molecular Clouds , 2000 .

[27]  L. Mundy,et al.  A Spectral Line Study of Serpens S68 FIRS1 Region , 2000 .

[28]  M. Tamura,et al.  1-4 Micron Spectrophotometry of Dust in the Taurus Dark Cloud: Water Ice Distribution in Heiles Cloud 2 , 2000 .

[29]  D. Lutz,et al.  The Composition and Distribution of Dust along the Line of Sight toward the Galactic Center , 2000, astro-ph/0002421.

[30]  T. Prusti,et al.  Observations of Solid Carbon Dioxide in Molecular Clouds with the Infrared Space Observatory , 1999 .

[31]  B. Lutz,et al.  CO and C2 Absorption toward W40 IRS 1a , 1999, astro-ph/9902363.

[32]  E. Bergin,et al.  Formation of Interstellar Ices behind Shock Waves , 1998, astro-ph/9811228.

[33]  J. Mathis The Near-Infrared Interstellar Silicate Bands and Grain Theories , 1998 .

[34]  T. Prusti,et al.  Detection of Abundant CO2 Ice in the Quiescent Dark Cloud Medium toward Elias 16 , 1998 .

[35]  M. Jura,et al.  The Definitive Abundance of Interstellar Oxygen , 1997, astro-ph/9710163.

[36]  A. Adamson,et al.  Three Micron Hydrocarbon and Methanol Absorption in Taurus , 1996 .

[37]  P. Martin,et al.  On the Dust-to-Gas Ratio and Large Particles in the Interstellar Medium , 1996 .

[38]  T. Kerr,et al.  High-Resolution Studies of Solid CO in the Taurus Dark Cloud: Characterizing the Ices in Quiescent Clouds , 1995 .

[39]  W. Langer,et al.  Study of Structure and Small-Scale Fragmentation in TMC-1 , 1995 .

[40]  T. Geballe,et al.  Detection of absorption by H2 in molecular clouds: A direct measurement of the H2:CO ratio , 1994 .

[41]  T. Kerr,et al.  Solid Carbon Monoxide in the Serpens Dark Cloud (Grad. Stud. Prize) 30 Min , 1993 .

[42]  K. Sellgren,et al.  Grain mantles in the Taurus dark cloud , 1993 .

[43]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[44]  S. Sandford,et al.  The physical and infrared spectral properties of CO2 in astrophysical ice analogs. , 1990, The Astrophysical journal.

[45]  W. Duley,et al.  Infrared spectroscopy of dust in the Taurus dark clouds: solid carbon monoxide , 1989 .

[46]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[47]  P. Roche,et al.  Infrared spectroscopy of dust in the Taurus dark clouds: ice and silicates , 1988 .

[48]  J. Koornneef,et al.  Low Mass Pre-Main Sequence Stars in the Serpens Molecular Cloud , 1984 .

[49]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[50]  D. Whittet The gas-to-dust ratio in the Rho Ophiuchi cloud , 1981 .

[51]  M. Jura Origin of large interstellar grains toward Rho Ophiuchi , 1980 .

[52]  J. Elias A study of the Taurus dark cloud complex , 1978 .

[53]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .