A New Hybrid Algorithm for Computing a Fast Discrete Fourier Transform

In this paper for certain long transform lengths, Winograd's algorithm for computing the discrete Fourier transform (DFT) is extended considerably. This is accomplisbed by performing the cyclic convolution, required by Winograd's method, with the Mersenne prime number-theoretic transform developed originally by Rader. This new algorithm requires fewer multiplications than either the standard fast Fourier transform (FFT) or Winograd's more conventional algorithm. However, more additions are required.

[1]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[3]  C. Burrus,et al.  Number theoretic transforms to implement fast digital convolution , 1975, Proceedings of the IEEE.

[4]  Trieu-Kien Truong,et al.  Fast number-theoretic transforms for digital filtering , 1976 .

[5]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[6]  J. Cooley,et al.  New algorithms for digital convolution , 1977 .

[7]  E. Vegh,et al.  Fast complex convolution in finite rings , 1976 .

[8]  Trieu-Kien Truong,et al.  Fast Mersenne-prime transforms for digital filtering , 1978 .

[9]  I. S. Reed,et al.  Integer Convolutions over the Finite Field $GF( {3 \cdot 2^n + 1} )$ , 1977 .

[10]  Trieu-Kien Truong,et al.  The use of finite fields to compute convolutions , 1975, IEEE Trans. Inf. Theory.

[11]  Trieu-Kien Truong,et al.  Complex integer convolutions over a direct sum of Galois fields , 1975, IEEE Trans. Inf. Theory.

[12]  Charles M. Rader,et al.  Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.

[13]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[14]  C. Burrus,et al.  Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .

[15]  J. Pollard Implementation of number-theoretic transforms , 1976 .

[16]  I. J. Good,et al.  The Interaction Algorithm and Practical Fourier Analysis: An Addendum , 1960 .

[17]  C. Rader Discrete Fourier transforms when the number of data samples is prime , 1968 .

[18]  Irving John Good,et al.  The Interaction Algorithm and Practical Fourier Analysis , 1958 .

[19]  I. S. Reed,et al.  X-Ray Reconstruction by Finite Field Transforms , 1977, IEEE Transactions on Nuclear Science.