A New Hybrid Algorithm for Computing a Fast Discrete Fourier Transform
暂无分享,去创建一个
[1] S. Winograd. On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[2] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[3] C. Burrus,et al. Number theoretic transforms to implement fast digital convolution , 1975, Proceedings of the IEEE.
[4] Trieu-Kien Truong,et al. Fast number-theoretic transforms for digital filtering , 1976 .
[5] J. Pollard,et al. The fast Fourier transform in a finite field , 1971 .
[6] J. Cooley,et al. New algorithms for digital convolution , 1977 .
[7] E. Vegh,et al. Fast complex convolution in finite rings , 1976 .
[8] Trieu-Kien Truong,et al. Fast Mersenne-prime transforms for digital filtering , 1978 .
[9] I. S. Reed,et al. Integer Convolutions over the Finite Field $GF( {3 \cdot 2^n + 1} )$ , 1977 .
[10] Trieu-Kien Truong,et al. The use of finite fields to compute convolutions , 1975, IEEE Trans. Inf. Theory.
[11] Trieu-Kien Truong,et al. Complex integer convolutions over a direct sum of Galois fields , 1975, IEEE Trans. Inf. Theory.
[12] Charles M. Rader,et al. Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.
[13] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[14] C. Burrus,et al. Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .
[15] J. Pollard. Implementation of number-theoretic transforms , 1976 .
[16] I. J. Good,et al. The Interaction Algorithm and Practical Fourier Analysis: An Addendum , 1960 .
[17] C. Rader. Discrete Fourier transforms when the number of data samples is prime , 1968 .
[18] Irving John Good,et al. The Interaction Algorithm and Practical Fourier Analysis , 1958 .
[19] I. S. Reed,et al. X-Ray Reconstruction by Finite Field Transforms , 1977, IEEE Transactions on Nuclear Science.