Nanocrystalline Cellulose/Polyvinylpyrrolidone Fibrous Composites Prepared by Electrospinning and Thermal Crosslinking

Nanocellulose/polyvinylpyrrolidone (nCel/PVP) fibrous composite materials containing rod-like nanocrystalline cellulose particles with the lengths varying in the range from 100 to 2000 nm were prepared by using DC electrospinning. The particle size had a strong effect on the precursor viscosity, process efficiency, and resulting fiber diameter. The thermal crosslinking of nCel/PVP composite nanofibers with up to 1.0 :  8.0 nCel/PVP weight ratio resulted in fibrous membranes with textural, air transport, and mass swelling properties varying significantly with the size of cellulose particles. The presence of nCel particles increased the oxidation resistance of PVP during the crosslinking and affected the morphological changes of nCel/PVP fibrous membranes in aqueous solutions. Particles with the smallest size improved the strength of the membrane but decreased its mass swelling capacity, whereas the larger particles led to a more porous and flexible, but mechanically weaker, membrane structure with a higher swelling ability. Thus, by using the nCel particles of different size and shape, the properties of nCel/PVP composite fibrous membranes can be tailored to a specific application.

[1]  A. Stanishevsky,et al.  Effect of nanocrystalline cellulose addition on needleless alternating current electrospinning and properties of nanofibrous polyacrylonitrile meshes , 2018 .

[2]  K. Okuyama,et al.  Synthesis of Dual-Size Cellulose-Polyvinylpyrrolidone Nanofiber Composites via One-Step Electrospinning Method for High-Performance Air Filter. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[3]  W. Frankel,et al.  Crospovidone and Microcrystalline Cellulose: A Novel Description of Pharmaceutical Fillers in the Gastrointestinal Tract , 2017, The American journal of surgical pathology.

[4]  B. Chabbert,et al.  Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment , 2017, Biotechnology for Biofuels.

[5]  S. De,et al.  Solvent effect and macrovoid formation in cellulose acetate phthalate (CAP)–polyacrylonitrile (PAN) blend hollow fiber membranes , 2017 .

[6]  Qinglin Wu,et al.  Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers , 2016, Materials.

[7]  Zhixiang Cui,et al.  Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers. , 2016, Carbohydrate polymers.

[8]  Siqi Huan,et al.  Manufacture of electrospun all-aqueous poly(vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure , 2016 .

[9]  E. Abraham,et al.  Nanocellulose, a tiny fiber with huge applications. , 2016, Current opinion in biotechnology.

[10]  A. Pegoretti,et al.  A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration , 2015 .

[11]  C. Ayranci,et al.  Cellulose Nanocrystals: Dispersion in Co-Solvent Systems and Effects on Electrospun Polyvinylpyrrolidone Fiber Mats , 2015 .

[12]  Wei Xue,et al.  Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. , 2015, Colloids and surfaces. B, Biointerfaces.

[13]  K. Uetani,et al.  Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets. , 2015, Biomacromolecules.

[14]  Tong Lin,et al.  Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers , 2015 .

[15]  E. Johan Foster,et al.  Recent advances in nanocellulose for biomedical applications , 2015 .

[16]  L. Turng,et al.  Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. , 2015, Materials science & engineering. C, Materials for biological applications.

[17]  S. Eichhorn,et al.  Orientation of cellulose nanocrystals in electrospun polymer fibres , 2015, Journal of Materials Science.

[18]  S. Eitssayeam,et al.  Mechanically improved antibacterial polycaprolactone/propolis electrospun fiber mat by adding bacterial nanocellulose , 2015 .

[19]  Kristiina Oksman,et al.  On the use of nanocellulose as reinforcement in polymer matrix composites , 2014 .

[20]  S. Olesik,et al.  Electrospinning silica/polyvinylpyrrolidone composite nanofibers , 2014 .

[21]  Alain Dufresne,et al.  Nanocellulose in biomedicine: Current status and future prospect , 2014 .

[22]  M. Poletto,et al.  Native Cellulose: Structure, Characterization and Thermal Properties , 2014, Materials.

[23]  Xiangfang Peng,et al.  Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams , 2014, Cellulose.

[24]  R. Moon,et al.  Microscopic Characterization of Nanofibers and Nanocrystals , 2014 .

[25]  G. Rutledge,et al.  Permeability of electrospun fiber mats under hydraulic flow , 2014 .

[26]  Sanaa I. Pirani,et al.  Preparation and characterization of electrospun PLA/nanocrystalline cellulose-based composites , 2013 .

[27]  G. Mun,et al.  Nanostructured Hydrogel Dressings on Base of Crosslinked Polyvinylpyrrolidone for Biomedical Application , 2013 .

[28]  Dario Pisignano,et al.  Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review , 2013 .

[29]  Chengjun Zhou,et al.  Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. , 2013, ACS applied materials & interfaces.

[30]  A. Zhu,et al.  UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation , 2013 .

[31]  L. Csóka,et al.  Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize , 2013 .

[32]  Chengjun Zhou,et al.  Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. , 2012, Carbohydrate polymers.

[33]  Yan Li,et al.  Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing , 2012, Journal of Materials Science: Materials in Medicine.

[34]  T. Godfrey,et al.  Dynamic Permeability of Porous Elastic Fabrics , 2012 .

[35]  D. Klemm,et al.  About the structure of cellulose: debating the Lindman hypothesis , 2012, Cellulose.

[36]  A. Romano,et al.  Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions , 2012, Cellulose.

[37]  N. Saha,et al.  PVP-based hydrogels: Synthesis, properties and applications , 2012 .

[38]  Chengjun Zhou,et al.  Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. , 2011, Biomacromolecules.

[39]  P. Sáha,et al.  Permeability and Biocompatibility of Novel Medicated Hydrogel Wound Dressings , 2010 .

[40]  O. Rojas,et al.  Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. , 2010, Biomacromolecules.

[41]  P. Kleinebudde,et al.  Use of crospovidone as pelletization aid as alternative to microcrystalline cellulose: effects on pellet properties , 2009, Drug development and industrial pharmacy.

[42]  G. Lyons,et al.  Preparation and characterization of Poly(vinyl alcohol) nanocomposites made from cellulose nanofibers , 2009 .

[43]  J. Tritt-Goc,et al.  Glass transition temperature and thermal decomposition of cellulose powder , 2008 .

[44]  Jessica D. Schiffman,et al.  A Review: Electrospinning of Biopolymer Nanofibers and their Applications , 2008 .

[45]  Darrell H. Reneker,et al.  Electrospinning of Nanofibers from Polymer Solutions and Melts , 2007 .

[46]  W. Park,et al.  Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. , 2005, Carbohydrate research.

[47]  R. W. Tock,et al.  Electrospinning of nanofibers , 2005 .

[48]  M. Fujii,et al.  Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone. , 2005, International journal of pharmaceutics.

[49]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[50]  M. L. Nelson,et al.  Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II , 1964 .

[51]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .