Examination of particle tails

The tail of the particle swarm optimisation (PSO) position distribution at stagnation is shown to be describable by a power law. This tail fattening is attributed to particle bursting on all length scales. The origin of the power law is concluded to lie in multiplicative randomness, previously encountered in the study of first-order stochastic difference equations, and generalised here to second-order equations. It is argued that recombinant PSO, a competitive PSO variant without multiplicative randomness, does not experience tail fattening at stagnation.

[1]  Rui Mendes,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2006 .

[2]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[3]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[4]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[5]  James Kennedy,et al.  Probability and dynamics in the particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[6]  Tim Blackwell,et al.  Understanding particle swarms through simplification: a study of recombinant PSO , 2007, GECCO '07.

[7]  D. Broomhead,et al.  Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation , 2007, GECCO '07.

[8]  D. Sornette,et al.  Convergent Multiplicative Processes Repelled from Zero: Power Laws and Truncated Power Laws , 1996, cond-mat/9609074.

[9]  D. Sornette Linear stochastic dynamics with nonlinear fractal properties , 1998 .

[10]  James Kennedy,et al.  Dynamic-probabilistic particle swarms , 2005, GECCO '05.

[11]  Riccardo Poli,et al.  Continuous optimisation theory made easy? finite-element models of evolutionary strategies, genetic algorithms and particle swarm optimizers , 2007, FOGA'07.

[12]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[13]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[14]  Tim M. Blackwell,et al.  The Lévy Particle Swarm , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[15]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[16]  Tim Blackwell,et al.  A simplified recombinant PSO , 2008 .

[17]  J. Kennedy,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  D. Sornette Multiplicative processes and power laws , 1997, cond-mat/9708231.

[20]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[21]  Sidney Redner,et al.  Random multiplicative processes: An elementary tutorial , 1990 .

[22]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  James D. Hamilton Time Series Analysis , 1994 .

[24]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[25]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[26]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[27]  Tang,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[28]  Sidney Redner,et al.  Random Multiplicative Processes and Multifractals , 1988 .

[29]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[30]  Andres Upegui,et al.  Particle Swarm Optimization with Discrete Recombination: An Online Optimizer for Evolvable Hardware , 2006, First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06).

[31]  D. Sornette MECHANISM FOR POWERLAWS WITHOUT SELF-ORGANIZATION , 2001, cond-mat/0110426.