DBSCAN, OPTICS ve K-Means Kümeleme Algoritmalarının Uygulamalı Karşılaştırılması
暂无分享,去创建一个
[1] Sanjay Ranka,et al. An effic ient k-means clustering algorithm , 1997 .
[2] Hans-Peter Kriegel,et al. Multi-step processing of spatial joins , 1994, SIGMOD '94.
[3] Michalis Vazirgiannis,et al. On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.
[4] Hans-Peter Kriegel,et al. The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.
[5] Jiawei Han,et al. Data Mining: Concepts and Techniques , 2000 .
[6] Hans-Peter Kriegel,et al. Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.
[7] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[8] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[9] Philip S. Yu,et al. Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..
[10] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[11] Pavel Berkhin,et al. A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.
[12] Paul S. Bradley,et al. Scaling Clustering Algorithms to Large Databases , 1998, KDD.
[13] Keinosuke Fukunaga,et al. Introduction to Statistical Pattern Recognition , 1972 .
[14] Shu-Hsien Liao,et al. Knowledge management technologies and applications - literature review from 1995 to 2002 , 2003, Expert Syst. Appl..
[15] R. Michalski,et al. Learning from Observation: Conceptual Clustering , 1983 .
[16] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[17] Daniel A. Keim,et al. An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.