DBSCAN, OPTICS ve K-Means Kümeleme Algoritmalarının Uygulamalı Karşılaştırılması

Bu calismada, veri madenciliginde guncel kumeleme algoritmalarindan DBSCAN, OPTICS ile gecmisi daha eskilere dayanan K-means algoritmasi karsilastirilmistir. Karsilastirma sentetik veritabani uzerinde gosterdikleri kume bulma performanslari degerlendirilerek yapilmistir. Sonucta, yakin zamanda literature giren DBSCAN ve OPTICS algoritmalarinin K-means algoritmasindan daha ustun kume olusturma ozelliklerine sahip oldugu tespit edilmistir.

[1]  Sanjay Ranka,et al.  An effic ient k-means clustering algorithm , 1997 .

[2]  Hans-Peter Kriegel,et al.  Multi-step processing of spatial joins , 1994, SIGMOD '94.

[3]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[4]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[5]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[6]  Hans-Peter Kriegel,et al.  Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.

[7]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[8]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[9]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[10]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[11]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[12]  Paul S. Bradley,et al.  Scaling Clustering Algorithms to Large Databases , 1998, KDD.

[13]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[14]  Shu-Hsien Liao,et al.  Knowledge management technologies and applications - literature review from 1995 to 2002 , 2003, Expert Syst. Appl..

[15]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[16]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[17]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.