Géométrie différentielle des fibrés vectoriels et algèbres de Clifford appliquées au traitement d'images multicanaux. (Differential geometry of vector bundles and Clifford algebras applied to multi-channels image processing)

Le sujet de cette these est l'apport d'applications du formalisme des algebres de Clifford au traitement d'images multicanaux. Nous y introduisons egalement l'utilisation du cadre des fibres vectoriels en traitement d'image. La Partie 1 est consacree a la segmentation d'images multicanaux. Nous generalisons l'approche de Di Zenzo pour la detection de contours en construisant des tenseurs metriques adaptes au choix de la segmentation. En utilisant le cadre des fibres en algebres de Clifford, nous montrons que le choix d'une segmentation d'une image est directement lie au choix d'une metrique, d'une connexion et d'une section sur un tel fibre. La Partie 2 est consacree a la regularisation. Nous utilisons le cadre des equations de la chaleur associees a des Laplaciens generalises sur des fibres vectoriels. Le resultat principal que nous obtenons est qu'en considerant l'equation de la chaleur associee a l'operateur de Hodge sur le fibre de Clifford d'une variete Riemannienne bien choisie, nous obtenons un cadre global pour regulariser de maniere anisotrope des images (videos) multicanaux, et des champs s'y rapportant tels des champs de vecteurs ou des champs de reperes orthonormes. Enfin, dans la Partie 3, nous nous interessons a l'analyse spectrale via la definition d'une transformee de Fourier d'une image multicanaux. Cette definition repose sur une theorie abstraite de la transformee de Fourier basee sur la notion de representation de groupe. De ce point de vue, la transformee de Fourier usuelle pour les images en niveau de gris est basee sur les representations irreductibles du groupe des translations du plan. Nous l'etendons aux images multicanaux en lui associant les representations reductibles de ce groupe.

[2]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[3]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[4]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[5]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[6]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[7]  Utpal Roy,et al.  Color Based Image Segmentation , 2008, 2008 International Conference on Information Technology.

[8]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.

[9]  Theo Gevers,et al.  Classifying color transitions into shadow-geometry, illumination, highlight or material edges , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[10]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[11]  Reiner Lenz,et al.  COLOR EDGE DETECTORS FOR CONICAL COLOR SPACES , 2000 .

[12]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[13]  Stephen Mann,et al.  Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.

[14]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[15]  Stephen J. Sangwine,et al.  Colour-sensitive edge detection using hypercomplex filters , 2000, 2000 10th European Signal Processing Conference.

[16]  Thierry Carron Segmentations d'images couleur dans la base teinte-luminance-saturation : approche numérique et symbolique , 1995 .

[17]  C. Doran,et al.  Geometric Algebra for Physicists , 2003 .

[18]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[19]  R. Kimmel,et al.  An efficient solution to the eikonal equation on parametric manifolds , 2004 .

[20]  Stephen J. Sangwine,et al.  Colour-dependent linear vector image filtering , 2004, 2004 12th European Signal Processing Conference.

[21]  Michael Felsberg,et al.  Low-level image processing with the structure multivector , 2002 .

[22]  Jean-Paul Gauthier,et al.  Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context , 2007, Journal of Mathematical Imaging and Vision.

[23]  Thierry Carron,et al.  Color edge detector using jointly hue, saturation and intensity , 1994, Proceedings of 1st International Conference on Image Processing.

[24]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[25]  Stephen J. Sangwine,et al.  Colour image filters based on hypercomplex convolution , 2000 .

[26]  Nicolas Bourbaki,et al.  Elements de Mathematiques , 1954, The Mathematical Gazette.

[27]  Jean-Paul Gauthier,et al.  Harmonic Analysis : Motions and Pattern Analysis on Motion Groups and Their Homogeneous Spaces , 2004 .

[28]  Thomas Batard,et al.  Clifford-Fourier Transform for Color Image Processing , 2010, Geometric Algebra Computing.

[29]  Gerik Scheuermann,et al.  Clifford Fourier transform on vector fields , 2005, IEEE Transactions on Visualization and Computer Graphics.

[30]  Clifford,et al.  Applications of Grassmann's Extensive Algebra , 1878 .

[31]  Remco Duits,et al.  Nonlinear Diffusion on the 2D Euclidean Motion Group , 2007, SSVM.

[32]  G. Sommer Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics , 2001 .

[33]  Thomas Batard,et al.  Heat kernels of generalized laplacians-application to color image smoothing , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[34]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[35]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[36]  Fred Brackx,et al.  The Two-Dimensional Clifford-Fourier Transform , 2006, Journal of Mathematical Imaging and Vision.

[37]  Michael Felsberg,et al.  Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.

[38]  Pierre Cartier,et al.  The algebraic theory of spinors and Clifford algebras , 1996 .

[39]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[40]  Andrea Fuster,et al.  A Riemannian scalar measure for diffusion tensor images , 2009, Pattern Recognit..

[41]  R. Lipsman Abstract harmonic analysis , 1968 .

[42]  Guillermo Sapiro,et al.  Direction diffusion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[43]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[44]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[45]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[46]  Gauthier,et al.  2 - Une méthode d'invariants de l'analyse harmonique en reconnaissance de formes , 1989 .

[47]  Nir A. Sochen,et al.  Regularizing Flows over Lie Groups , 2009, Journal of Mathematical Imaging and Vision.

[48]  Thomas Batard,et al.  Clifford Algebra Bundles to Multidimensional Image Segmentation , 2010 .

[49]  T. Frankel The geometry of physics : an introduction , 2004 .

[50]  Thomas Bülow,et al.  Hypercomplex spectral signal representations for the processing and analysis of images , 1999 .

[51]  Thomas Batard,et al.  A Metric Approach to nD Images Edge Detection with Clifford Algebras , 2009, Journal of Mathematical Imaging and Vision.

[52]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.