Géométrie différentielle des fibrés vectoriels et algèbres de Clifford appliquées au traitement d'images multicanaux. (Differential geometry of vector bundles and Clifford algebras applied to multi-channels image processing)
暂无分享,去创建一个
[2] Ron Kimmel,et al. Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..
[3] David Tschumperlé,et al. Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.
[4] Nikos Paragios,et al. Handbook of Mathematical Models in Computer Vision , 2005 .
[5] Aldo Cumani,et al. Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..
[6] Rachid Deriche,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[7] Utpal Roy,et al. Color Based Image Segmentation , 2008, 2008 International Conference on Information Technology.
[8] Rachid Deriche,et al. Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.
[9] Theo Gevers,et al. Classifying color transitions into shadow-geometry, illumination, highlight or material edges , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).
[10] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[11] Reiner Lenz,et al. COLOR EDGE DETECTORS FOR CONICAL COLOR SPACES , 2000 .
[12] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[13] Stephen Mann,et al. Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.
[14] Rachid Deriche,et al. Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[15] Stephen J. Sangwine,et al. Colour-sensitive edge detection using hypercomplex filters , 2000, 2000 10th European Signal Processing Conference.
[16] Thierry Carron. Segmentations d'images couleur dans la base teinte-luminance-saturation : approche numérique et symbolique , 1995 .
[17] C. Doran,et al. Geometric Algebra for Physicists , 2003 .
[18] Ron Kimmel,et al. A general framework for low level vision , 1998, IEEE Trans. Image Process..
[19] R. Kimmel,et al. An efficient solution to the eikonal equation on parametric manifolds , 2004 .
[20] Stephen J. Sangwine,et al. Colour-dependent linear vector image filtering , 2004, 2004 12th European Signal Processing Conference.
[21] Michael Felsberg,et al. Low-level image processing with the structure multivector , 2002 .
[22] Jean-Paul Gauthier,et al. Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context , 2007, Journal of Mathematical Imaging and Vision.
[23] Thierry Carron,et al. Color edge detector using jointly hue, saturation and intensity , 1994, Proceedings of 1st International Conference on Image Processing.
[24] Xavier Pennec,et al. A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.
[25] Stephen J. Sangwine,et al. Colour image filters based on hypercomplex convolution , 2000 .
[26] Nicolas Bourbaki,et al. Elements de Mathematiques , 1954, The Mathematical Gazette.
[27] Jean-Paul Gauthier,et al. Harmonic Analysis : Motions and Pattern Analysis on Motion Groups and Their Homogeneous Spaces , 2004 .
[28] Thomas Batard,et al. Clifford-Fourier Transform for Color Image Processing , 2010, Geometric Algebra Computing.
[29] Gerik Scheuermann,et al. Clifford Fourier transform on vector fields , 2005, IEEE Transactions on Visualization and Computer Graphics.
[30] Clifford,et al. Applications of Grassmann's Extensive Algebra , 1878 .
[31] Remco Duits,et al. Nonlinear Diffusion on the 2D Euclidean Motion Group , 2007, SSVM.
[32] G. Sommer. Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics , 2001 .
[33] Thomas Batard,et al. Heat kernels of generalized laplacians-application to color image smoothing , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).
[34] Jitendra Malik,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[35] Pietro Perona. Orientation diffusions , 1998, IEEE Trans. Image Process..
[36] Fred Brackx,et al. The Two-Dimensional Clifford-Fourier Transform , 2006, Journal of Mathematical Imaging and Vision.
[37] Michael Felsberg,et al. Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.
[38] Pierre Cartier,et al. The algebraic theory of spinors and Clifford algebras , 1996 .
[39] Anthony J. Yezzi,et al. Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..
[40] Andrea Fuster,et al. A Riemannian scalar measure for diffusion tensor images , 2009, Pattern Recognit..
[41] R. Lipsman. Abstract harmonic analysis , 1968 .
[42] Guillermo Sapiro,et al. Direction diffusion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[43] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[44] Guillermo Sapiro,et al. Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.
[45] Silvano Di Zenzo,et al. A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..
[46] Gauthier,et al. 2 - Une méthode d'invariants de l'analyse harmonique en reconnaissance de formes , 1989 .
[47] Nir A. Sochen,et al. Regularizing Flows over Lie Groups , 2009, Journal of Mathematical Imaging and Vision.
[48] Thomas Batard,et al. Clifford Algebra Bundles to Multidimensional Image Segmentation , 2010 .
[49] T. Frankel. The geometry of physics : an introduction , 2004 .
[50] Thomas Bülow,et al. Hypercomplex spectral signal representations for the processing and analysis of images , 1999 .
[51] Thomas Batard,et al. A Metric Approach to nD Images Edge Detection with Clifford Algebras , 2009, Journal of Mathematical Imaging and Vision.
[52] Stephen J. Sangwine,et al. Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.