High‐resolution near‐infrared spectroscopy of water dimer

High‐resolution near‐infrared spectra are reported for all of the O–H stretch vibrational bands of the water dimer. The four O–H vibrations are characterized as essentially independent proton‐donor or proton‐acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

[1]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[2]  G. T. Fraser,et al.  Microwave electric‐resonance optothermal spectroscopy of (H2O)2 , 1989 .

[3]  G. T. Fraser Vibrational exchange upon interconversion tunneling in (HF)2 and (HCCH)2 , 1989 .

[4]  D. Dayton,et al.  Mode-dependent vibrational predissociation in the HCN-HF binary complex , 1988 .

[5]  J. T. Hougen,et al.  A GENERALIZED INTERNAL AXIS METHOD FOR HIGH BARRIER TUNNELING PROBLEMS, AS APPLIED TO THE WATER DIMER , 1985 .

[6]  J. Flaud,et al.  High resolution Fourier transform spectrum of water between 2930 and 4255 cm-1 , 1973 .

[7]  D. Coker,et al.  The infrared predissociation spectra of water clusters , 1985 .

[8]  I. Mills Born-Oppenheimer failure in the separation of low-frequency molecular vibrations , 1984 .

[9]  J. T. Hougen,et al.  Tunneling splittings in the water dimer: Further development of the theory , 1988 .

[10]  Clifford R. Pollock,et al.  Computer control of broadly tunable lasers: conversion of a color center laser into a high resolution laser spectrometer. , 1982, Applied optics.

[11]  G. T. Fraser,et al.  Infrared and microwave investigations of interconversion tunneling in the acetylene dimer , 1988 .

[12]  Z. Huang,et al.  Mode specific vibrational relaxation in the acetylene–hydrogen fluoride binary complex , 1989 .

[13]  R. Watts,et al.  Liquid state chemical physics , 1976 .

[14]  David F. Coker,et al.  The Infrared Absorption Spectrum of Water , 1982 .

[15]  E. Clementi,et al.  Study of the structure of molecular complexes. IV. The Hartree‐Fock potential for the water dimer and its application to the liquid state , 1973 .

[16]  S. Leutwyler,et al.  Intramolecular vibrations of small water clusters , 1988 .

[17]  K. Jucks,et al.  The nitrogen–hydrogen fluoride dimer: Infrared spectroscopy and vibrational predissociation , 1987 .

[18]  J. Pople,et al.  Theory of Molecular Interactions. I. Molecular Orbital Studies of Water Polymers Using a Minimal Slater‐Type Basis , 1970 .

[19]  W. J. Lafferty,et al.  Vibrational predissociation, tunneling, and rotational saturation in the HF and DF dimers , 1984 .

[20]  H. Kwok,et al.  Infrared Vibrational Predissociation Spectroscopy of Water Clusters by the Crossed Laser-molecular Beam Technique , 1982 .

[21]  T. R. Dyke,et al.  Group theoretical classification of the tunneling–rotational energy levels of water dimer , 1977 .

[22]  T. E. Gough,et al.  Multiple crossing devices for laser‐molecular beam spectroscopy , 1981 .

[23]  D. Nesbitt,et al.  Hindered internal rotation in jet cooled H2HF complexes , 1987 .

[24]  R. C. Cohen,et al.  Measurement of the perpendicular rotation‐tunneling spectrum of the water dimer by tunable far infrared laser spectroscopy in a planar supersonic jet , 1989 .

[25]  T. E. Gough,et al.  Infrared laser spectroscopy of molecular beams , 1977 .

[26]  Z. Huang,et al.  Sub‐Doppler resolution infrared spectroscopy of water dimer , 1988 .

[27]  K. Jucks,et al.  The vibrational predissociation lifetime of the HF dimer upon exciting the ‘‘free‐H’’ stretching vibration , 1986 .

[28]  J. A. Odutola,et al.  Water dimer tunneling states with K=0 , 1988 .

[29]  G. T. Fraser,et al.  Vibrational, rotational, and tunneling dependence of vibrational predissociation in the HF dimer , 1988 .

[30]  J. T. Hougen,et al.  New measurements of microwave transitions in the water dimer , 1987 .

[31]  D. Coker,et al.  Structure and vibrational spectroscopy of the water dimer using quantum simulation , 1987 .

[32]  H. C. Longuet-Higgins The symmetry groups of non-rigid molecules , 1963 .

[33]  W. Klemperer,et al.  Radiofrequency and Microwave Spectrum of the Hydrogen Fluoride Dimer; a Nonrigid Molecule , 1972 .

[34]  John S. Muenter,et al.  THE STRUCTURE OF WATER DIMER FROM MOLECULAR BEAM ELECTRIC RESONANCE SPECTROSCOPY: PARTIALLY DEUTERATED DIMERS , 1977 .

[35]  K. Jucks,et al.  The effect of vibrational state mixing on the predissociation lifetime of ν1 excited OC–HF , 1987 .