An integral predictive / nonlinear H ∞ control structure for a quadrotor helicopter

This paper presents an integral predictive andnonlinear robust control strategy to solve the path following problem for a quadrotor helicopter. The dynamic motion equations are obtained by the Lagrange–Euler formalism. The proposed control structure is a hierarchical scheme consisting of a model predictive controller (mpc) to track the reference trajectory together with a nonlinear H∞ controller to stabilize the rotational movements. In both controllers the integral of the position error is considered, allowing the achievement of a null steady-state error when sustained disturbances are acting on the system. Simulation results in the presence of aerodynamic disturbances, parametric and structural uncertainties are presented to corroborate the effectiveness and the robustness of the proposed strategy. © 2009 Elsevier Ltd. All rights reserved.

[1]  John J. Craig,et al.  Introduction to robotics - mechanics and control (2. ed.) , 1989 .

[2]  Ian Postlethwaite,et al.  Robust Nonlinear H∞/Adaptive Control of Robot Manipulator Motion , 1993 .

[3]  Rogelio Lozano,et al.  Non-linear Control for Underactuated Mechanical Systems , 2001 .

[4]  Reza Olfati-Saber,et al.  Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles , 2001 .

[5]  A. Benallegue,et al.  Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback , 2001, Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No.01TH8591).

[6]  Ming Chen,et al.  A Combined MBPC/2 DOF H infinity Controller for a Quad Rotor UAV , 2003 .

[7]  Van,et al.  L2-Gain Analysis of Nonlinear Systems and Nonlinear State Feedback H∞ Control , 2004 .

[8]  Roland Siegwart,et al.  PID vs LQ control techniques applied to an indoor micro quadrotor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[9]  Roland Siegwart,et al.  Design and control of an indoor micro quadrotor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  P. Castillo,et al.  Stabilization of a mini rotorcraft with four rotors , 2005, IEEE Control Systems.

[11]  Manuel G. Ortega,et al.  Robustness improvement of a nonlinear H ∞ controller for robot manipulators via saturation functions , 2005 .

[12]  Rogelio Lozano,et al.  Modelling and Control of Mini-Flying Machines , 2005 .

[13]  F. Kuhne,et al.  Point stabilization of mobile robots with nonlinear model predictive control , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[14]  Boubaker Daachi,et al.  ROBUST FEEDBACK LINEARIZATION AND GH∞ CONTROLLER FOR A QUADROTOR UNMANNED AERIAL VEHICLE , 2005 .

[15]  Shuli Sun Designing approach on trajectory-tracking control of mobile robot , 2005 .

[16]  Abdelaziz Benallegue,et al.  Exact linearization and sliding Mode observer for a quadrotor Unmanned Aerial Vehicle , 2006, Int. J. Robotics Autom..

[17]  Roland Siegwart,et al.  Full control of a quadrotor , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Eduardo F. Camacho,et al.  Model Predictive Controllers , 2007 .

[19]  T. Madani,et al.  Sliding Mode Observer and Backstepping Control for a Quadrotor Unmanned Aerial Vehicles , 2007, 2007 American Control Conference.

[20]  T. Hamel,et al.  A practical Visual Servo Control for a Unmanned Aerial Vehicle , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  Robert E. Mahony,et al.  A Practical Visual Servo Control for an Unmanned Aerial Vehicle , 2008, IEEE Transactions on Robotics.

[22]  G.V. Raffo,et al.  Backstepping/nonlinear H∞ control for path tracking of a quadrotor unmanned aerial vehicle , 2008, 2008 American Control Conference.

[23]  Guilherme V. Raffo,et al.  A Predictive Controller for Autonomous Vehicle Path Tracking , 2009, IEEE Transactions on Intelligent Transportation Systems.