Beating the classical limits of information transmission using a quantum decoder

Encoding schemes and error-correcting codes are widely used in information technology to improve the reliability of data transmission over real-world communication channels. Quantum information protocols can further enhance the performance in data transmission by encoding a message in quantum states; however, most proposals to date have focused on the regime of a large number of uses of the noisy channel, which is unfeasible with current quantum technology. We experimentally demonstrate quantum enhanced communication over an amplitude damping noisy channel with only two uses of the channel per bit and a single entangling gate at the decoder. By simulating the channel using a photonic interferometric setup, we experimentally increase the reliability of transmitting a data bit by greater than 20% for a certain damping range over classically sending the message twice. We show how our methodology can be extended to larger systems by simulating the transmission of a single bit with up to eight uses of the channel and a two-bit message with three uses of the channel, predicting a quantum enhancement in all cases.

[1]  Vincent Y. F. Tan,et al.  Moderate Deviation Analysis for Classical Communication over Quantum Channels , 2017, Communications in Mathematical Physics.

[2]  John A. Smolin,et al.  Entanglement-Enhanced Classical Communication on a Noisy Quantum Channel , 1996, quant-ph/9611006.

[3]  Yang Lu,et al.  Entanglement-enhanced classical communication over a noisy classical channel , 2010, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[4]  A. Rezakhani,et al.  Quantum imaging as an ancilla-assisted process tomography , 2015, 1509.02031.

[5]  Matteo Rosati,et al.  Achieving the Holevo bound via a bisection decoding protocol , 2015, ArXiv.

[6]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[7]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[8]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[9]  Peter P Rohde,et al.  Measurement-Based Linear Optics. , 2016, Physical review letters.

[10]  Saikat Guha,et al.  Structured optical receivers to attain superadditive capacity and the Holevo limit , 2011, Physical review letters.

[11]  C. Helstrom Quantum detection and estimation theory , 1969 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  V. F. D'yachenko,et al.  PROBLEMS OF INFORMATION TRANSMISSION. INSTITUTE OF INFORMATION TRANSMISSION (SELECTED ARTICLES). , 1966 .

[14]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[15]  Saikat Guha,et al.  Realizable receivers for discriminating coherent and multicopy quantum states near the quantum limit , 2012, 1212.2048.

[16]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[17]  Saikat Guha,et al.  Second-order coding rates for pure-loss bosonic channels , 2014, Quantum Inf. Process..

[18]  S. V. Enk,et al.  Experimental Proposal for Achieving Superadditive Communication Capacities with a Binary Quantum Alphabet , 1999, quant-ph/9903039.

[19]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[20]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[21]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[22]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[23]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[24]  Keiji Sasaki,et al.  Demonstration of an optical quantum controlled-NOT gate without path interference. , 2005, Physical review letters.

[25]  Robert Prevedel,et al.  Optimal linear optical implementation of a single-qubit damping channel , 2011, 1109.2070.

[26]  K J Resch,et al.  Demonstration of a simple entangling optical gate and its use in bell-state analysis. , 2005, Physical review letters.

[27]  G. Falci,et al.  Information transmission over an amplitude damping channel with an arbitrary degree of memory , 2015, 1510.05313.

[28]  Boris B. Blinov,et al.  Quantum Computing with Trapped Ion Hyperfine Qubits , 2004, Quantum Inf. Process..

[29]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[30]  Rabia Jahangir,et al.  Quantum capacity of an amplitude-damping channel with memory , 2012, Quantum Inf. Process..

[31]  Nicolai Friis,et al.  Coherent controlization using superconducting qubits , 2015, Scientific Reports.

[32]  C. Macchiavello,et al.  Classical and quantum capacities of a fully correlated amplitude damping channel , 2013, 1309.2219.

[33]  J Eisert,et al.  Entangled inputs cannot make imperfect quantum channels perfect. , 2010, Physical review letters.

[34]  M. Izutsu,et al.  Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.

[35]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[36]  B L Higgins,et al.  Mixed state discrimination using optimal control. , 2009, Physical review letters.

[37]  Seth Lloyd,et al.  Sequential projective measurements for channel decoding. , 2010, Physical review letters.

[39]  R. Gallager Information Theory and Reliable Communication , 1968 .

[40]  Yong-Su Kim,et al.  Experimental demonstration of decoherence suppression by quantum measurement reversal , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[41]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[42]  H. Vincent Poor,et al.  Channel coding: non-asymptotic fundamental limits , 2010 .

[43]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[44]  Brett Hemenway,et al.  Optimal entanglement-assisted one-shot classical communication , 2012, 1201.1521.

[45]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[46]  Li Jian,et al.  Linear Optical Realization of Qubit Purification with Quantum Amplitude Damping Channel , 2007 .

[47]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[48]  J. Habif,et al.  Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.