Enumerating Contingency Tables via Random Permanents

Given m positive integers R = (ri), n positive integers C = (cj) such that Σri = Σcj = N, and mn non-negative weights W=(wij), we consider the total weight T=T(R, C; W) of non-negative integer matrices D=(dij) with the row sums ri, column sums cj, and the weight of D equal to $\prod w_{ij}^{d_{ij}}$ . For different choices of R, C, and W, the quantity T(R,C; W) specializes to the permanent of a matrix, the number of contingency tables with prescribed margins, and the number of integer feasible flows in a network. We present a randomized algorithm whose complexity is polynomial in N and which computes a number T′=T′(R,C;W) such that T′ ≤ T ≤ α(R,C)T′ where $\alpha(R,C) = \min \bigl\{\prod r_i! r_i^{-r_i}, \ \prod c_j! c_j^{-c_j} \bigr\} N^N/N!$ . In many cases, ln T′ provides an asymptotically accurate estimate of ln T. The idea of the algorithm is to express T as the expectation of the permanent of an N × N random matrix with exponentially distributed entries and approximate the expectation by the integral T′ of an efficiently computable log-concave function on mn.

[1]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[2]  Leonid Gurvits The Van der Waerden conjecture for mixed discriminants , 2004 .

[3]  Martin E. Dyer,et al.  A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant , 2002, STOC '02.

[4]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[5]  Jesús A. De Loera,et al.  Counting Integer Flows in Networks , 2003, Found. Comput. Math..

[6]  Martin E. Dyer,et al.  Approximately counting integral flows and cell-bounded contingency tables , 2005, STOC '05.

[7]  David Aldous Discrete probability and algorithms , 1995 .

[8]  George W. Soules New permanental upper bounds for nonnegative matrices , 2003 .

[9]  A. Frieze,et al.  Log-Sobolev inequalities and sampling from log-concave distributions , 1999 .

[10]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[11]  Richard Sinkhorn Continuous Dependence of A in the D 1 AD 2 Theorems , 1972 .

[12]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[13]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[14]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[15]  Louis J. Billera,et al.  New perspectives in algebraic combinatorics , 1999 .

[16]  Santosh S. Vempala,et al.  Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[17]  L. Khachiyan,et al.  ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING , 1996 .

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  Persi Diaconis,et al.  Random Matrices, Magic Squares and Matching Polynomials , 2004, Electron. J. Comb..

[20]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[21]  Nicholas G. Polson,et al.  Sampling from log-concave distributions , 1994 .

[22]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[23]  Miklós Bóna A Combinatorial Proof of the Log-Concavity of a Famous Sequence Counting Permutations , 2005, Electron. J. Comb..

[24]  David London,et al.  On matrices with a doubly stochastic pattern , 1971 .

[25]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[26]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[27]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[28]  Alexander Barvinok Low rank approximations of symmetric polynomials and asymptotic counting of contingency tables , 2005 .

[29]  Martin E. Dyer,et al.  Sampling contingency tables , 1997, Random Struct. Algorithms.

[30]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[31]  U. Rothblum,et al.  On complexity of matrix scaling , 1999 .

[32]  Ben Morris Improved bounds for sampling contingency tables , 2002, Random Struct. Algorithms.

[33]  S. Vempala Geometric Random Walks: a Survey , 2007 .

[34]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.