Circuit Symmetry Verification Mitigates Quantum-Domain Impairments

State-of-the-art noisy intermediate-scale quantum computers require low-complexity techniques for the mitigation of computational errors inflicted by quantum decoherence. Symmetry verification constitutes a class of quantum error mitigation (QEM) techniques, which distinguishes erroneous computational results from the correct ones by exploiting the intrinsic symmetry of the computational tasks themselves. Inspired by the benefits of quantum switch in the quantum communication theory, we propose beneficial techniques for circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state. In particular, we propose the spatio-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain stabilizer formalism to circuit-oriented stabilizers. The applicability and implementational strategies of the proposed techniques are demonstrated by using practical quantum algorithms, including the quantum Fourier transform (QFT) and the quantum approximate optimization algorithm (QAOA).

[1]  Zhenyu Cai,et al.  Resource-efficient Purification-based Quantum Error Mitigation , 2021, 2107.07279.

[2]  Soon Xin Ng,et al.  Quantum Error Mitigation Relying on Permutation Filtering , 2021, IEEE Transactions on Communications.

[3]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[4]  K. C. Tan,et al.  Error mitigation in quantum metrology via zero noise extrapolation , 2021, 2101.03766.

[5]  Zhenyu Cai,et al.  Quantum Error Mitigation using Symmetry Expansion , 2021, Quantum.

[6]  Soon Xin Ng,et al.  Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs. Coded Systems , 2020, IEEE Access.

[7]  Ryan Babbush,et al.  Virtual Distillation for Quantum Error Mitigation , 2020, Physical Review X.

[8]  Bálint Koczor,et al.  Exponential Error Suppression for Near-Term Quantum Devices , 2020, Physical Review X.

[9]  B. Nachman,et al.  Zero-noise extrapolation for quantum-gate error mitigation with identity insertions , 2020, Physical Review A.

[10]  Ryuji Takagi,et al.  Optimal resource cost for error mitigation , 2020, Physical Review Research.

[11]  W. Zeng,et al.  Digital zero noise extrapolation for quantum error mitigation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[12]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[13]  S. Benjamin,et al.  QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator , 2019, Quantum Science and Technology.

[14]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[15]  Johannes Jakob Meyer,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[16]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[17]  Angela Sara Cacciapuoti,et al.  Quantum Switch for the Quantum Internet: Noiseless Communications Through Noisy Channels , 2019, IEEE Journal on Selected Areas in Communications.

[18]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[19]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[20]  Philippe Allard Gu'erin,et al.  Communication through quantum-controlled noise , 2018, Physical Review A.

[21]  G. Chiribella,et al.  Quantum Shannon theory with superpositions of trajectories , 2018, Proceedings of the Royal Society A.

[22]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[23]  Some Sankar Bhattacharya,et al.  Indefinite causal order enables perfect quantum communication with zero capacity channels , 2018, New Journal of Physics.

[24]  Giulio Chiribella,et al.  Quantum communication in a superposition of causal orders , 2018, ArXiv.

[25]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[26]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[27]  C. Branciard,et al.  Indefinite Causal Order in a Quantum Switch. , 2018, Physical review letters.

[28]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[29]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[30]  Jarrod R. McClean,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2017, 1707.06408.

[31]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[32]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[33]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[34]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[35]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[36]  Li Wang,et al.  Multiple-Symbol Joint Signal Processing for Differentially Encoded Single- and Multi-Carrier Communications: Principles, Designs and Applications , 2014, IEEE Communications Surveys & Tutorials.

[37]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[38]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[39]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[40]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[41]  J. Tillich,et al.  Quantum serial turbo-codes , 2007, 2008 IEEE International Symposium on Information Theory.

[42]  Bertrand M. Hochwald,et al.  Differential unitary space-time modulation , 2000, IEEE Trans. Commun..

[43]  Brian L. Hughes,et al.  Differential space-time modulation , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[44]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[46]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[47]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[48]  Vaidman,et al.  Superpositions of time evolutions of a quantum system and a quantum time-translation machine. , 1990, Physical review letters.

[49]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[50]  Lajos Hanzo,et al.  Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective , 2018, IEEE Access.