Efficient cosmological parameter sampling using sparse grids

We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the cosmic microwave background log-likelihood based on sparse grids, which is used as a shortcut for the likelihood evaluation. We obtain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelized to an arbitrary degree. Our approach is completely general, and it can adaptively exploit the properties of the underlying function. We can thus apply it to any problem where an accurate interpolation of a function is needed.

[1]  S. Gull,et al.  Fast cosmological parameter estimation using neural networks , 2006, astro-ph/0608174.

[2]  Barbara I. Wohlmuth,et al.  Fuzzy Arithmetic Based on Dimension-Adaptive Sparse Grids: a Case Study of a Large-Scale Finite Element Model under Uncertain Parameters , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[3]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[4]  L. Knox,et al.  Normal Parameters for an Analytic Description of the Cosmic Microwave Background Cosmological Parameter Likelihood , 2002, astro-ph/0212466.

[5]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[6]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[7]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[8]  Gabriel Wittum,et al.  Efficient Hierarchical Approximation of High-Dimensional Option Pricing Problems , 2007, SIAM J. Sci. Comput..

[9]  Jochen Garcke,et al.  Regression with the optimised combination technique , 2006, ICML.

[10]  Markus Hegland,et al.  Fitting multidimensional data using gradient penalties and the sparse grid combination technique , 2009, Computing.

[11]  Dirk Pflüger,et al.  Adaptive Sparse Grid Techniques for Data Mining , 2006, HPSC.

[12]  Lloyd Knox,et al.  Rapid Calculation of Theoretical Cosmic Microwave Background Angular Power Spectra , 2002 .

[13]  CMBFIT: Rapid WMAP likelihood calculations with normal parameters , 2004, astro-ph/0311544.

[14]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[15]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[16]  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[17]  David Higdon,et al.  Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background , 2007 .

[18]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[19]  M. Hobson,et al.  cosmonet: fast cosmological parameter estimation in non-flat models using neural networks , 2007, astro-ph/0703445.

[20]  M. Halpern,et al.  SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .

[21]  Michael Doran,et al.  Analyse this! A cosmological constraint package for CMBEASY , 2004 .

[22]  Benjamin D. Wandelt,et al.  Computing High Accuracy Power Spectra with Pico , 2007, 0712.0194.

[23]  Ralf Hiptmair,et al.  Sparse adaptive finite elements for radiative transfer , 2008, J. Comput. Phys..

[24]  M. Fukugita,et al.  CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.

[25]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[26]  Michael Griebel,et al.  Data Mining with Sparse Grids , 2001, Computing.

[27]  Arthur Kosowsky,et al.  Fast cosmological parameter estimation from microwave background temperature and polarization power spectra , 2004 .

[28]  Peter Coles,et al.  Cosmology: The Origin and Evolution of Cosmic Structure , 1995 .