Coupled hydromechanical‐fracture simulations of nonplanar three‐dimensional hydraulic fracture propagation

Summary This paper presents an algorithm and a fully coupled hydromechanical-fracture formulation for the simulation of three-dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3-D fracture front at every fracture propagation step. A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time-dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3-D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.

[1]  P. W. Sharp,et al.  Self-similar solutions for elastohydrodynamic cavity flow , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Ahmed S. Abou-Sayed,et al.  A Variational Approach To The Prediction Of The Three-Dimensional Geometry Of Hydraulic Fractures , 1981 .

[3]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[4]  M. Mear,et al.  Predictions of the Growth of Multiple Interacting Hydraulic Fractures in Three Dimensions , 2013 .

[5]  Victor C. Tsai,et al.  A model for turbulent hydraulic fracture and application to crack propagation at glacier beds , 2010 .

[6]  D. A. Spence,et al.  Magma‐driven propagation of cracks , 1985 .

[7]  Takatoshi Ito,et al.  In situ stress measurements by hydraulic fracturing for a rock mass with many planes of weakness , 1997 .

[8]  J. Weertman Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges , 1971 .

[9]  Véronique Lazarus,et al.  Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading , 2003 .

[10]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[11]  A. Khristianovic Zheltov,et al.  3. Formation of Vertical Fractures by Means of Highly Viscous Liquid , 1955 .

[12]  Hans Albert Richard,et al.  Theoretical crack path prediction , 2005 .

[13]  Robert W. Zimmerman,et al.  On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics , 2015 .

[14]  C. Duarte,et al.  Accuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite Element Method , 2017 .

[15]  T. K. Perkins,et al.  Widths of Hydraulic Fractures , 1961 .

[16]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[17]  Elizaveta Gordeliy,et al.  Coupling schemes for modeling hydraulic fracture propagation using the XFEM , 2013 .

[18]  Djebbar Tiab,et al.  Constant rate solutions for a fractured well with an asymmetric fracture , 2000 .

[19]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[20]  R. S. Dunham,et al.  A contour integral computation of mixed-mode stress intensity factors , 1976, International Journal of Fracture.

[21]  Carlos Armando Duarte,et al.  Improvements of explicit crack surface representation and update within the generalized finite element method with application to three‐dimensional crack coalescence , 2014 .

[22]  Xiangmin Jiao,et al.  Three-dimensional crack growth with hp-generalized finite element and face offsetting methods , 2010 .

[23]  Emmanuel M Detournay,et al.  Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic solutions , 2002 .

[24]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[25]  I. Babuska,et al.  A numerical method with a posteriori error estimation for determining the path taken by a propagating crack , 1998 .

[26]  Carlos Armando Duarte,et al.  Coupled formulation and algorithms for the simulation of non‐planar three‐dimensional hydraulic fractures using the generalized finite element method , 2016 .

[27]  Gary Williams,et al.  Fluid injection for rockburst control in deep mining. , 1992 .

[28]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[29]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[30]  K. W. Lynch,et al.  On-site Fracturing Disposal of Oilfield-Waste Solids in Wilmington Field, California , 1999 .

[31]  Elizaveta Gordeliy,et al.  Implicit level set schemes for modeling hydraulic fractures using the XFEM , 2013 .

[32]  A. M. Raaen,et al.  Stress determination from hydraulic fracturing tests : the system stiffness approach , 2001 .

[33]  Koji Yamamoto,et al.  Multiple Fracture Propagation Model for a Three-Dimensional Hydraulic Fracturing Simulator , 2004 .

[34]  Samuel Geniaut,et al.  A simple method for crack growth in mixed mode with X-FEM , 2012 .

[35]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[36]  R. P. Nordgren,et al.  Propagation of a Vertical Hydraulic Fracture , 1972 .

[37]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[38]  Emmanuel M Detournay,et al.  Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks , 2004 .

[39]  G. Kullmer,et al.  A new criterion for the prediction of crack development in multiaxially loaded structures , 2002 .

[40]  Ivo Babuška,et al.  Computation of the amplitude of stress singular terms for cracks and reentrant corners , 1988 .

[41]  A. Peirce Modeling multi-scale processes in hydraulic fracture propagation using the implicit level set algorithm , 2015 .

[42]  Tatacipta Dirgantara,et al.  Stress intensity factors for cracks in thin plates , 2002 .

[43]  R. Ballarini,et al.  Stress-intensity factor approximations for two-dimensional curvilinear cracks , 2000 .

[44]  M. Wheeler,et al.  A Numerical Technique for Simulating Non-planar Evolution of Hydraulic Fractures , 2005 .

[45]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[46]  R. Nuismer An energy release rate criterion for mixed mode fracture , 1975 .

[47]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[48]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[49]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[50]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[51]  J. Hunt,et al.  Evaluation and completion procedure for produced brine and waste water disposal wells , 1994 .

[52]  Carlos Armando Duarte,et al.  Simulation of non‐planar three‐dimensional hydraulic fracture propagation , 2014 .

[53]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .