General atomic and molecular electronic structure system

A description of the ab initio quantum chemistry package GAMESS is presented. Chemical systems containing atoms through radon can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication. Emphasis is given to novel features of the program. The parallelization strategy used in the RHF, ROHF, UHF, and GVB sections of the program is described, and detailed speecup results are given. Parallel calculations can be run on ordinary workstations as well as dedicated parallel machines. © John Wiley & Sons, Inc.

[1]  Geerd H. F. Diercksen,et al.  Self‐Consistent Perturbation Theory. II. Extension to Open Shells , 1968 .

[2]  B. Brooks,et al.  The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications , 1979 .

[3]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[4]  Max Wolfsberg,et al.  The Spectra and Electronic Structure of the Tetrahedral Ions MnO4−, CrO4−−, and ClO4− , 1952 .

[5]  Robert J. Harrison,et al.  A parallel implementation of the COLUMBUS multireference configuration interaction program , 1993 .

[6]  R. Hoffmann,et al.  Counterintuitive Orbital Mixing in Semiempirical and ab Initio Molecular Orbital Calculations , 1978 .

[7]  Mark S. Gordon,et al.  Regiocontrol by Remote Substituents. An Enantioselective Total Synthesis of Frenolicin B via a Highly Regioselective Diels-Alder Reaction , 1993 .

[8]  V. R. Saunders,et al.  On methods for converging open-shell Hartree-Fock wave-functions , 1974 .

[9]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[10]  Mark S. Gordon,et al.  Uncatalyzed Peptide Bond Formation In the Gas Phase , 1992 .

[11]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[12]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations , 1982 .

[13]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .

[14]  Russell M. Pitzer,et al.  A progress report on the status of the COLUMBUS MRCI program system , 1988 .

[15]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[16]  John E. Adams,et al.  Reaction path Hamiltonian for polyatomic molecules , 1980 .

[17]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[18]  Michael W. Schmidt,et al.  Are atoms sic to molecular electronic wavefunctions? II. Analysis of fors orbitals , 1982 .

[19]  Henry F. Schaefer,et al.  Analytic second derivative techniques for self-consistent-field wave functions. A new approach to the solution of the coupled perturbed hartree-fock equations , 1983 .

[20]  Enrico Clementi,et al.  Roothaan-Hartree-Fock atomic wavefunctions , 1974 .

[21]  P. Pulay,et al.  Ab initio prediction of vibrational spectra: a database approach , 1990 .

[22]  H. Bernhard Schlegel,et al.  Estimating the hessian for gradient-type geometry optimizations , 1984 .

[23]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[24]  M. Gordon,et al.  From Force Fields to Dynamics: Classical and Quantal Paths , 1990, Science.

[25]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[26]  Hans Peter Lüthi,et al.  A coarse‐grain parallel implementation of the direct SCF method , 1992 .

[27]  Robert J. Harrison,et al.  Computational chemistry on the FPS-X64 scientific computers , 1987 .

[28]  Russell M. Pitzer,et al.  An SCF method for hole states , 1976 .

[29]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[30]  J. S. Binkley,et al.  The calculation of spin-restricted single-determinant wavefunctions , 1974 .

[31]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[32]  S. Huzinaga,et al.  Basis sets for molecular calculations , 1985 .

[33]  Richard E. Stanton,et al.  Corresponding Orbitals and the Nonorthogonality Problem in Molecular Quantum Mechanics , 1967 .

[34]  Peter Pulay,et al.  UHF natural orbitals for defining and starting MC‐SCF calculations , 1988 .

[35]  Patrick W. Fowler,et al.  Do electrostatic interactions predict structures of van der Waals molecules , 1983 .

[36]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[37]  Mark S. Gordon,et al.  Structure, bonding, and internal rotation in phosphine oxide (H3PO), hydroxyphosphine (H2POH), and hydroxyfluorophosphine (HFPOH) , 1984 .

[38]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[39]  Henry F. Schaefer,et al.  Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor , 1987 .

[40]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[41]  M. Gordon,et al.  Ab initio reaction paths and direct dynamics calculations , 1989 .

[42]  V. R. Saunders,et al.  A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions , 1973 .

[43]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[44]  Harrell Sellers ADEM-DIOS: an SCF convergence algorothm for difficult cases , 1991 .

[45]  M. Gordon,et al.  Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. , 1967, Journal of the American Chemical Society.

[46]  H. Bernhard Schlegel,et al.  Reaction Path Following in Mass-Weighted Internal Coordinates , 1990 .

[47]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[48]  Mark S. Gordon,et al.  Decomposition of Normal-Coordinate Vibrational Frequencies , 1989 .

[49]  Bernard R. Brooks,et al.  The Loop-Driven Graphical Unitary Group Approach: A Powerful Method for the Variational Description of Electron Correlation , 1980 .

[50]  Christian Bachmann,et al.  A program system for ab initio MO calculations on vector and parallel processing machines. II : SCF closed-shell and open-shell iterations , 1990 .

[51]  Aage E. Hansen,et al.  Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors , 1985 .

[52]  P. Pulay Improved SCF convergence acceleration , 1982 .

[53]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[54]  Mark S. Gordon,et al.  Experimental and Computational Studies of Four-Coordinate Aluminum: The Reaction of Aluminates and Acids , 1993 .

[55]  Mark S. Gordon,et al.  A comparative study of the bonding in heteroatom analogues of benzene , 1992 .

[56]  Michael C. Zerner,et al.  A generalized restricted open-shell Fock operator , 1987 .

[57]  Michel Dupuis,et al.  Parallel computation of the Moller–Plesset second‐order contribution to the electronic correlation energy , 1988 .

[58]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[59]  Mark S. Gordon,et al.  Systematic survey of cyclic silicon-oxygen compounds , 1991 .

[60]  Kazuhiro Ishida,et al.  The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H−+CH4→CH4+H− , 1977 .

[61]  Michel Dupuis,et al.  Molecular symmetry. III. Second derivatives of electronic energy with respect to nuclear coordinates , 1981 .

[62]  David M. Silver,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. I. Theory , 1970 .

[63]  P. Pulay,et al.  Direct inversion in the iterative subspace (DIIS) optimization of open‐shell, excited‐state, and small multiconfiguration SCF wave functions , 1986 .

[64]  Sarah L. Price,et al.  A DISTRIBUTED MULTIPOLE ANALYSIS OF THE CHARGE-DENSITIES OF THE AZABENZENE MOLECULES , 1983 .

[65]  Walter B. Neilsen,et al.  Extrapolation in iterative sequences , 1973 .

[66]  Roland Wiest,et al.  A program system for ab initio MO calculations on vector and parallel processing machines III. Integral reordering and four-index transformation , 1991 .

[67]  Victor W. Laurie,et al.  Anharmonic Potential Constants and Their Dependence upon Bond Length , 1961 .

[68]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[69]  S. Huzinaga,et al.  Applicability of Roothaan's Self-Consistent Field Theory , 1960 .

[70]  P. Otto,et al.  Parallelization of quantum mechanical integral calculations , 1992 .

[71]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[72]  John E. Carpenter,et al.  The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions , 1988 .

[73]  H. Bernhard Schlegel,et al.  Improved algorithms for reaction path following: Higher‐order implicit algorithms , 1991 .

[74]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[75]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[76]  Alistair P. Rendell,et al.  Quantum chemistry on parallel computer architectures: coupled-cluster theory applied to the bending potential of fulminic acid , 1992 .

[77]  Thomas A. Halgren,et al.  Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods , 1974 .

[78]  R. Manne,et al.  A new procedure for Roothaan's symmetry-restricted open-shell SCF method , 1976 .

[79]  Petr Čársky,et al.  Use of molecular symmetry in two‐electron integral transformation An MP2 program compatible with HONDO 5 , 1984 .

[80]  Donald G. Truhlar,et al.  POLYRATE: A general computer program for variational transition state theory and semiclassical tunneling calculations of chemical reaction rates , 1987 .

[81]  Michel Dupuis,et al.  Molecular symmetry. II. Gradient of electronic energy with respect to nuclear coordinates , 1978 .

[82]  Mark S. Gordon,et al.  The Intrinsic Reaction Coordinate and the Rotational Barrier in Silaethylene , 1985 .

[83]  John A. Pople,et al.  Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations , 1976 .

[84]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[85]  Paul Baybutt,et al.  Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons , 1976 .

[86]  Henry F. Schaefer,et al.  Analytic energy second derivatives for open-shell two-configuration self-consistent-field wave functions: application to carbyne and silyne least-motion insertion reactions , 1988 .

[87]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[88]  Charles W. Bauschlicher,et al.  The construction of modified virtual orbitals (MVO’s) which are suited for configuration interaction calculations , 1980 .

[89]  H. F. King,et al.  An interpolation method for forcing SCF convergence , 1981 .

[90]  Ernest R. Davidson,et al.  Spin-restricted open-shell self-consistent-field theory , 1973 .

[91]  Jürgen Gauss,et al.  An unconventional scf method for calculations on large molecules , 1986 .

[92]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[93]  J. Baker An algorithm for the location of transition states , 1986 .

[94]  Rick A. Kendall,et al.  An efficient implementation of the direct-SCF algorithm on parallel computer architectures , 1993 .

[95]  Michel Dupuis,et al.  Molecular symmetry in methods for electron correlation , 1992 .

[96]  Ramon Carbo,et al.  A General SCF Theory , 1978 .

[97]  William D. Gwinn,et al.  Normal Coordinates: General Theory, Redundant Coordinates, and General Analysis Using Electronic Computers , 1971 .

[98]  Michel Dupuis,et al.  Molecular symmetry and closed‐shell SCF calculations. I , 1977 .

[99]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[100]  Peter J. Knowles,et al.  Restricted Møller—Plesset theory for open-shell molecules , 1991 .

[101]  Michel Dupuis,et al.  Energy Derivatives and Symmetry , 1986 .

[102]  Klaus Ruedenberg,et al.  MCSCF Studies of Chemical Reactions: Natural Reaction Orbitals and Localized Reaction Orbitals , 1976 .

[103]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[104]  Lawrence A. Covick,et al.  Four‐Index transformation on distributed‐memory parallel computers , 1990 .

[105]  Mark S. Gordon,et al.  MCSCF/6-31 G(d,p) Calculations of One-Electron Spin-Orbit Coupling Constants In Diatomic Molecules , 1992 .

[106]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[107]  M. D. Cooper,et al.  The implementation of ab initio quantum chemistry calculations on transputers , 1991, J. Comput. Aided Mol. Des..

[108]  Michel Dupuis,et al.  Parallel computation of molecular energy gradients on the loosely coupled array of processors (LCAP) , 1987 .

[109]  Thomas R. Cundari,et al.  Transition Metal Imido Complexes , 1992 .

[110]  Michel Dupuis,et al.  The general atomic and molecular electronic structure system hondo: Version 7.0 , 1989 .

[111]  Donald H. Phillips,et al.  On the use of corresponding orbitals in the calculation of nonorthogonal transition moments , 1981 .

[112]  Mark S. Gordon,et al.  .pi.-Bond strengths of H2X:YH2: X = Ge, Sn; Y = C, Si, Ge, Sn , 1992 .

[113]  Marc Bénard,et al.  A program system for ab initio mo calculations on vector and parallel processing machines I. Evaluation of integrals , 1990 .

[114]  Robert J. Harrison,et al.  A parallel version of ARGOS: A distributed memory model for shared memory UNIX computers , 1991 .