Quantifying Statistical Interdependence by Message Passing on Graphs—Part II: Multidimensional Point Processes

Stochastic event synchrony is a technique to quantify the similarity of pairs of signals. First, events are extracted from the two given time series. Next, one tries to align events from one time series with events from the other. The better the alignment, the more similar the two time series are considered to be. In Part I, the companion letter in this issue, one-dimensional events are considered; this letter concerns multidimensional events. Although the basic idea is similar, the extension to multidimensional point processes involves a significantly more difficult combinatorial problem and therefore is nontrivial. Also in the multidimensional case, the problem of jointly computing the pairwise alignment and SES parameters is cast as a statistical inference problem. This problem is solved by coordinate descent, more specifically, by alternating the following two steps: (1) estimate the SES parameters from a given pairwise alignment; (2) with the resulting estimates, refine the pairwise alignment. The SES parameters are computed by maximum a posteriori (MAP) estimation (step 1), in analogy to the one-dimensional case. The pairwise alignment (step 2) can no longer be obtained through dynamic programming, since the state space becomes too large. Instead it is determined by applying the max-product algorithm on a cyclic graphical model. In order to test the robustness and reliability of the SES method, it is first applied to surrogate data. Next, it is applied to detect anomalies in EEG synchrony of mild cognitive impairment (MCI) patients. Numerical results suggest that SES is significantly more sensitive to perturbations in EEG synchrony than a large variety of classical synchrony measures.

[1]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[2]  D. Loiselle,et al.  Event-Related Potentials: A Methods Handbook , 2006, Neurology.

[3]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[4]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[5]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[6]  James C. Bezdek,et al.  Some Notes on Alternating Optimization , 2002, AFSS.

[7]  W. Singer Consciousness and the Binding Problem , 2001, Annals of the New York Academy of Sciences.

[8]  P. Sellers On the Theory and Computation of Evolutionary Distances , 1974 .

[9]  William T. Freeman,et al.  On the fixed points of the max-product algorithm , 2000 .

[10]  Maren Grigutsch,et al.  EEG oscillations and wavelet analysis , 2005 .

[11]  Andrzej Cichocki,et al.  A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG , 2010, NeuroImage.

[12]  Jonathan D. Victor,et al.  Dynamic programming algorithms for comparing multineuronal spike trains via cost-based metrics and alignments , 2007, Journal of Neuroscience Methods.

[13]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[14]  C. Koch,et al.  A framework for consciousness , 2003, Nature Neuroscience.

[15]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[16]  Paul H. E. Tiesinga,et al.  A New Correlation-Based Measure of Spike Timing Reliability , 2002, Neurocomputing.

[17]  S. Mallat A wavelet tour of signal processing , 1998 .

[18]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[19]  Benjamin Schrauwen,et al.  Linking non-binned spike train kernels to several existing spike train metrics , 2006, ESANN.

[20]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[21]  R. Howard,et al.  Local convergence analysis of a grouped variable version of coordinate descent , 1987 .

[22]  M. Browne,et al.  Low-probability event-detection and separation via statistical wavelet thresholding: an application to psychophysiological denoising , 2002, Clinical Neurophysiology.

[23]  N. Crone,et al.  Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans , 2004, Clinical Neurophysiology.

[24]  W. Shankle,et al.  A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease , 2002, Clinical Neurophysiology.

[25]  R. Chapman,et al.  Brain event-related potentials: Diagnosing early-stage Alzheimer's disease , 2007, Neurobiology of Aging.

[26]  L. R. Rabiner,et al.  A comparative study of several dynamic time-warping algorithms for connected-word recognition , 1981, The Bell System Technical Journal.

[27]  Mark C. W. van Rossum,et al.  A Novel Spike Distance , 2001, Neural Computation.

[28]  Bert Huang,et al.  Loopy Belief Propagation for Bipartite Maximum Weight b-Matching , 2007, AISTATS.

[29]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[30]  H. Matsuda Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease , 2001, Annals of nuclear medicine.

[31]  Richard Baraniuk,et al.  Compressed Sensing Reconstruction via Belief Propagation , 2006 .

[32]  Andrzej Cichocki,et al.  Statistical Modeling and Analysis of Laser-Evoked Potentials of Electrocorticogram Recordings from Awake Humans , 2007, Comput. Intell. Neurosci..

[33]  Yoram Singer,et al.  Spikernels: Predicting Arm Movements by Embedding Population Spike Rate Patterns in Inner-Product Spaces , 2005, Neural Computation.

[34]  D. Aronov Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons , 2003, Journal of Neuroscience Methods.

[35]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  F. Vialatte Modélisation en bosses pour l'analyse de motifs oscillatoires reproductibles dans l'activité de populations neuronales: applications à l'apprentissage olfactif chez l'animal et à la détection précoce de la maladie d'Alzheimer , 2005 .

[37]  J. White,et al.  Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. , 2002, Journal of neurophysiology.

[38]  Richard G. Baraniuk,et al.  Fast reconstruction of piecewise smooth signals from random projections , 2005 .

[39]  Sujay Sanghavi Equivalence of LP Relaxation and Max-Product for Weighted Matching in General Graphs , 2007, 2007 IEEE Information Theory Workshop.

[40]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[41]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[42]  Joel A. Tropp,et al.  Algorithmic linear dimension reduction in the l_1 norm for sparse vectors , 2006, ArXiv.

[43]  M. Rowan,et al.  Memory-related EEG power and coherence reductions in mild Alzheimer's disease. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[44]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[45]  A. Kohn,et al.  Measuring spike pattern reliability with the Lempel–Ziv-distance , 2006, Journal of Neuroscience Methods.

[46]  Fredric J. Harris,et al.  Multirate Signal Processing for Communication Systems , 2004 .

[47]  Dmitry M. Malioutov,et al.  Linear programming analysis of loopy belief propagation for weighted matching , 2007, NIPS.

[48]  L. Williams,et al.  Contents , 2020, Ophthalmology (Rochester, Minn.).

[49]  Li Ping,et al.  The Factor Graph Approach to Model-Based Signal Processing , 2007, Proceedings of the IEEE.

[50]  Antonio Politi,et al.  Measuring spike train synchrony , 2007, Journal of Neuroscience Methods.

[51]  Andrzej Cichocki,et al.  Measuring Neural Synchrony by Message Passing , 2007, NIPS.

[52]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[53]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[54]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[55]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[56]  C. Borgs,et al.  On the exactness of the cavity method for weighted b-matchings on arbitrary graphs and its relation to linear programs , 2008, 0807.3159.

[57]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[58]  K. Pakdaman,et al.  Random dynamics of the Morris-Lecar neural model. , 2004, Chaos.

[59]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[60]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[61]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, ISIT.

[62]  Jaeseung Jeong EEG dynamics in patients with Alzheimer's disease , 2004, Clinical Neurophysiology.

[63]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[64]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[65]  Shin Ishii,et al.  On the Synchrony of Morphological and Molecular Signaling Events in Cell Migration , 2008, ICONIP.

[66]  Boris S. Gutkin,et al.  Dynamics of Membrane Excitability Determine Interspike Interval Variability: A Link Between Spike Generation Mechanisms and Cortical Spike Train Statistics , 1998, Neural Computation.

[67]  Paul H. E. Tiesinga,et al.  Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks , 2004, Neural Computation.

[68]  Willy Wong,et al.  The adaptive chirplet transform and visual evoked potentials , 2006, IEEE Transactions on Biomedical Engineering.

[69]  Godfrey L. Smith,et al.  S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. , 2007, Cell calcium.

[70]  Claire Martin,et al.  Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition? , 2004, The Journal of Neuroscience.

[71]  J. D. Hunter,et al.  Amplitude and frequency dependence of spike timing: implications for dynamic regulation. , 2003, Journal of neurophysiology.

[72]  J. Cui,et al.  Time-frequency analysis of visual evoked potentials using chirplet transform , 2005 .

[73]  Rémi Gervais,et al.  A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics , 2007, Neural Networks.

[74]  R. Gervais,et al.  Blind Source Separation and Sparse Bump Modelling of Time Frequency Representation of Eeg Signals: New Tools for Early Detection of Alzheimer's Disease , 2022 .

[75]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[76]  Robert G. Gallager,et al.  Discrete Stochastic Processes , 1995 .

[77]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[78]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[79]  L. Kantha,et al.  Numerical models of oceans and oceanic processes , 2000 .

[80]  R Quian Quiroga,et al.  Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[82]  Carl E. Rasmussen,et al.  Prediction on Spike Data Using Kernel Algorithms , 2003, NIPS.