The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices.

This paper reports on the full classification of Dirichlet-Voronoi polyhedra and Delaunay subdivisions of five-dimensional translational lattices. A complete list is obtained of 110 244 affine types (L-types) of Delaunay subdivisions and it turns out that they are all combinatorially inequivalent, giving the same number of combinatorial types of Dirichlet-Voronoi polyhedra. Using a refinement of corresponding secondary cones, 181 394 contraction types are obtained. The paper gives details of the computer-assisted enumeration, which was verified by three independent implementations and a topological mass formula check.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  Mikhail Ivanovich Shtogrin Regular Dirichlet-Voronoĭ partitions for the second triclinic group , 1975 .

[3]  Sergeĭ Sergeevich Ryshkov,et al.  C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra : with application to the theory of coverings , 1978 .

[4]  M. Senechal,et al.  An Introduction to the Theory of Figures: the geometry of E.S. Fedorov , 1984 .

[5]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[6]  Sergei S. Ryshkov,et al.  On Lattice Dicing , 1994, Eur. J. Comb..

[7]  G. Ziegler Lectures on Polytopes , 1994 .

[8]  Wilhelm Plesken,et al.  Computing Isometries of Lattices , 1997, J. Symb. Comput..

[9]  Engel The contraction types of parallelohedra in E5 , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[10]  Peter Engel,et al.  There are Exactly 222 L-types of Primitive Five-dimensional Lattices , 2002, Eur. J. Comb..

[11]  P. G. Kononenko Affine Types of $$L $$ -Polyhedra for $$5 $$ -lattices , 2002 .

[12]  Mathieu Dutour The six-dimensional Delaunay polytopes , 2002 .

[13]  Volker Kaibel,et al.  On the Complexity of Polytope Isomorphism Problems , 2003, Graphs Comb..

[14]  Frank Vallentin,et al.  Computational Approaches to Lattice Packing and Covering Problems , 2006, Discret. Comput. Geom..

[15]  Steve Linton,et al.  GAP: groups, algorithms, programming , 2007, ACCA.

[16]  A. Schürmann,et al.  Computational geometry of positive definite quadratic forms : polyhedral reduction theories, algorithms, and applications , 2008 .

[17]  Mathieu Dutour Sikiric,et al.  The decomposition of the hypermetric cone into L-domains , 2007, Eur. J. Comb..

[18]  Jin-ichi Itoh,et al.  Affine Equivalent Classes of Parallelohedra , 2010, CGGA.

[19]  On the enumeration of the combinatorial types of primitive parallelohedra in Ed, 2 ≤ d ≤ 6 , 2013 .

[20]  A. Schuermann,et al.  On the cohomology of linear groups over imaginary quadratic fields , 2013, 1307.1165.

[21]  A. Gavrilyuk A class of affinely equivalent Voronoi parallelohedra , 2014 .

[22]  Mathieu Dutour Sikiric,et al.  On the sum of a parallelotope and a zonotope , 2014, Eur. J. Comb..

[23]  D. Pasechnik,et al.  Computing symmetry groups of polyhedra , 2012, LMS J. Comput. Math..

[24]  M. D. Sikirić,et al.  The seven dimensional perfect Delaunay polytopes and Delaunay simplices , 2015, 1505.03687.