Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance.

Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental study of an algorithm proposed by Wu, Byrd, and Lidar [Phys. Rev. Lett. 89, 057904 (2002).10.1103/PhysRevLett.89.057904] to find the low-lying spectrum of a pairing Hamiltonian. While the number of elementary quantum gates required scales polynomially with the size of the system, it increases inversely to the desired error bound E. Making such simulations robust to decoherence using fault tolerance requires an additional factor of approximately 1/E gates. These constraints, along with the effects of control errors, are illustrated using a three qubit NMR system.

[1]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[2]  D. Suter,et al.  Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer , 2004, quant-ph/0411049.

[3]  E. Knill,et al.  Liquid state NMR simulations of quantum many-body problems , 2004, quant-ph/0410106.

[4]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[5]  G. Milburn,et al.  Fast simulation of a quantum phase transition in an ion-trap realizable unitary map , 2004, quant-ph/0401137.

[6]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[7]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[8]  J. Cirac,et al.  Simulation of quantum dynamics with quantum optical systems , 2002, Quantum Inf. Comput..

[9]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[10]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[11]  N. C. Menicucci,et al.  Local realistic model for the dynamics of bulk-ensemble NMR information processing. , 2001, Physical review letters.

[12]  Daniel A. Lidar,et al.  Polynomial-time simulation of pairing models on a quantum computer. , 2001, Physical review letters.

[13]  R. Brockett,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2001, quant-ph/0106099.

[14]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[16]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[17]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[18]  Timothy F. Havel,et al.  Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.

[19]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[20]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[21]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[24]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[25]  Mckenzie Exact Results for Quantum Phase Transitions in Random XY Spin Chains. , 1996, Physical review letters.

[26]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[27]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[28]  R. Feynman Simulating physics with computers , 1999 .

[29]  G. Mahan Many-particle physics , 1981 .

[30]  Physical Review , 1965, Nature.

[31]  H. Trotter Approximation of semi-groups of operators , 1958 .