Adaptive enhanced sampling by force-biasing using neural networks.

A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.

[1]  Haohao Fu,et al.  Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations. , 2016, Journal of chemical theory and computation.

[2]  Juan J. de Pablo,et al.  Flux Tempered Metadynamics , 2011 .

[3]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[4]  Mark E Tuckerman,et al.  Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces. , 2017, Physical review letters.

[5]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[6]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[7]  A. Laio,et al.  A bias-exchange approach to protein folding. , 2007, The journal of physical chemistry. B.

[8]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[9]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[10]  Juan J de Pablo,et al.  Sculpting bespoke mountains: Determining free energies with basis expansions. , 2015, The Journal of chemical physics.

[11]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[12]  Bradley M Dickson Approaching a parameter-free metadynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Yuji Sugita,et al.  Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics. , 2017, Journal of chemical theory and computation.

[14]  Gabriel Stoltz,et al.  Smoothed Biasing Forces Yield Unbiased Free Energies with the Extended-System Adaptive Biasing Force Method , 2016, The journal of physical chemistry. B.

[15]  Juan J de Pablo,et al.  Basis function sampling: a new paradigm for material property computation. , 2014, Physical review letters.

[16]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[17]  Hythem Sidky,et al.  Learning free energy landscapes using artificial neural networks. , 2017, The Journal of chemical physics.

[18]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[19]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[20]  Daniel R. Reid,et al.  SSAGES: Software Suite for Advanced General Ensemble Simulations. , 2018, The Journal of chemical physics.

[21]  Eric Darve,et al.  Adaptive biasing force method for scalar and vector free energy calculations. , 2008, The Journal of chemical physics.

[22]  Juan de Pablo,et al.  A boundary correction algorithm for metadynamics in multiple dimensions. , 2013, The Journal of chemical physics.

[23]  Noam Bernstein,et al.  Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression. , 2016, Journal of chemical theory and computation.

[24]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[25]  Christophe Chipot,et al.  The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask , 2014, The journal of physical chemistry. B.

[26]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[27]  Michele Parrinello,et al.  Variational approach to enhanced sampling and free energy calculations. , 2014, Physical review letters.

[28]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[29]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[30]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[31]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.