The boundary element method with Lagrangian multipliers

On open surfaces, the energy space of hypersingular operators is a fractional order Sobolev space of order 1/2 with homogeneous Dirichlet boundary condition (along the boundary curve of the surface) in a weak sense. We introduce a boundary element Galerkin method where this boundary condition is incorporated via the use of a Lagrangian multiplier. We prove the quasi-optimal convergence of this method (it is slightly inferior to the standard conforming method) and underline the theory by a numerical experiment. The approach presented in this article is not meant to be a competitive alternative to the conforming method but rather the basis for nonconforming techniques like the mortar method, to be developed. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009

[1]  Norbert Heuer,et al.  The $p$-Version of the Boundary Element Method for a Three-Dimensional Crack Problem , 2005 .

[2]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[3]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Houde Han,et al.  The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity , 1994 .

[6]  Norbert Heuer,et al.  On the h-p version of the boundary element method for Symm's integral equation on polygons , 1993 .

[7]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[8]  I. Babuska,et al.  On the mixed finite element method with Lagrange multipliers , 2003 .

[9]  Norbert Heuer,et al.  The hp-version of the boundary element method with quasi-uniform meshes in three dimensions , 2008 .

[10]  A. Maue,et al.  Zur Formulierung eines allgemeinen Beugungs-problems durch eine Integralgleichung , 1949 .

[11]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[12]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[13]  J. Nédélec,et al.  Integral equations with non integrable kernels , 1982 .

[14]  Ernst P. Stephan,et al.  A boundary integral equation method for three‐dimensional crack problems in elasticity , 1986 .

[15]  Ernst P. Stephan,et al.  Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes , 1990 .

[16]  Norbert Heuer,et al.  Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen , 2001, Numerische Mathematik.

[17]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[18]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .