Integration of 2D materials on a silicon photonics platform for optoelectronics applications

Abstract Owing to enormous growth in both data storage and the demand for high-performance computing, there has been a major effort to integrate telecom networks on-chip. Silicon photonics is an ideal candidate, thanks to the maturity and economics of current CMOS processes in addition to the desirable optical properties of silicon in the near IR. The basics of optical communication require the ability to generate, modulate, and detect light, which is not currently possible with silicon alone. Growing germanium or III/V materials on silicon is technically challenging due to the mismatch between lattice constants and thermal properties. One proposed solution is to use two-dimensional materials, which have covalent bonds in-plane, but are held together by van der Waals forces out of plane. These materials have many unique electrical and optical properties and can be transferred to an arbitrary substrate without lattice matching requirements. This article reviews recent progress toward the integration of 2D materials on a silicon photonics platform for optoelectronic applications.

[1]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[2]  Jonghwan Kim,et al.  Electrical control of silicon photonic crystal cavity by graphene. , 2012, Nano letters.

[3]  Andres Castellanos-Gomez,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. , 2014, Nature communications.

[4]  A. Helmy,et al.  Multilayer Black Phosphorus as a Versatile Mid-Infrared Electro-optic Material. , 2015, Nano letters.

[5]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[6]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[7]  Mingyuan Ge,et al.  Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. , 2015, Advanced materials.

[8]  K. Unterrainer,et al.  Intrinsic Response Time of Graphene Photodetectors , 2011, Nano letters.

[9]  Ying Zhang,et al.  CMOS-integrated high-speed MSM germanium waveguide photodetector. , 2010, Optics express.

[10]  Aaron M. Jones,et al.  Control of two-dimensional excitonic light emission via photonic crystal , 2013, 1311.6071.

[11]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[12]  Aaron M. Jones,et al.  Ultrafast hot-carrier-dominated photocurrent in graphene. , 2012, Nature nanotechnology.

[13]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[14]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[15]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[16]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[17]  Ciyuan Qiu,et al.  Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. , 2014, Nano letters.

[18]  Dirk Englund,et al.  High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. , 2012, Nano letters.

[19]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[20]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[21]  Sailing He,et al.  Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices , 2014 .

[22]  Igor Aharonovich,et al.  Quantum emission from hexagonal boron nitride monolayers , 2016, CLEO 2016.

[23]  Jr.,et al.  Enhanced photodetection in graphene-integrated photonic crystal cavity , 2013, 1311.2080.

[24]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[25]  A. M. van der Zande,et al.  Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. , 2013, Applied physics letters.

[26]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[27]  A. Majumdar,et al.  Hybrid 2D Material Nanophotonics: A Scalable Platform for Low-Power Nonlinear and Quantum Optics , 2015 .

[28]  Zetian Mi,et al.  Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature. , 2015, Nano letters.

[29]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[30]  Jianlin Zhao,et al.  A highly efficient thermo-optic microring modulator assisted by graphene. , 2015, Nanoscale.

[31]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[32]  Ming-Cheng Chen,et al.  Single quantum emitters in monolayer semiconductors. , 2015, Nature nanotechnology.

[33]  Nathan Youngblood,et al.  Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. , 2014, Nano letters.

[34]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[35]  Dirk Englund,et al.  High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. , 2014, Nano letters.

[36]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[37]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[38]  Electrical control of second-harmonic generation in a WSe2 monolayer transistor. , 2015, Nature nanotechnology.

[39]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[40]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[41]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, 1302.3854.

[42]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[43]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[44]  Yingying Wu,et al.  High-quality sandwiched black phosphorus heterostructure and its quantum oscillations , 2014, Nature Communications.

[45]  A. Kuzmenko,et al.  Universal optical conductance of graphite. , 2007, Physical review letters.

[46]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[47]  John Shalf,et al.  Optical Interconnects and Extreme Computing , 2016 .

[48]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[49]  Theodore B Norris,et al.  Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. , 2008, Physical review letters.

[50]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[51]  Cedric Huyghebaert,et al.  Broadband 10 Gb/s operation of graphene electro‐absorption modulator on silicon , 2016 .

[52]  Phaedon Avouris,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[53]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[54]  G. Su,et al.  Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. , 2014, Physical chemistry chemical physics : PCCP.

[55]  Phaedon Avouris,et al.  Origin of photoresponse in black phosphorus phototransistors , 2014, 1407.7286.

[56]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[57]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[58]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[59]  Mo Li,et al.  Switching energy limits of waveguide-coupled graphene-on-graphene optical modulators. , 2012, Optics express.

[60]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[61]  G. Lo,et al.  Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides , 2016 .

[62]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[63]  Mo Li,et al.  High-speed waveguide-coupled graphene-on-graphene optical modulators , 2012 .

[64]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[65]  Dirk Englund,et al.  High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. , 2015, Nano letters.

[66]  Y. Arakawa,et al.  Silicon Optical Interposers for High-Density Optical Interconnects , 2016 .

[67]  Field Effect Optoelectronic Modulation of Quantum-Confined Carriers in Black Phosphorus. , 2016, Nano letters.

[68]  Robert Schneider,et al.  Single-photon emission from localized excitons in an atomically thin semiconductor , 2015 .

[69]  Daniel Schall,et al.  50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems , 2014 .

[70]  Mo Li,et al.  Optical absorption in graphene integrated on silicon waveguides , 2012 .

[71]  Qiangfei Xia,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[72]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[73]  Hao Hu,et al.  Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator. , 2015, Nano letters.

[74]  J. Coleman,et al.  Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. , 2016, ACS nano.

[75]  Thomas Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[76]  S. Strauf,et al.  Single quantum dot nanolaser , 2011 .

[77]  Daniel Schall,et al.  Graphene based low insertion loss electro-absorption modulator on SOI waveguide. , 2014, Optics express.

[78]  Peide D. Ye,et al.  Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus , 2015, Nature Communications.

[79]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[80]  O. P. Pchelyakov,et al.  GaAs epitaxy on Si substrates: modern status of research and engineering , 2008 .

[81]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[82]  Xiaodong Xu,et al.  Single Defect Light-Emitting Diode in a van der Waals Heterostructure. , 2016, Nano letters.

[83]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[84]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[85]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[86]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[87]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[88]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[89]  A. Majumdar,et al.  Hybrid 2 D Material Nanophotonics : A Scalable Platform for Low-Power Nonlinear and Quantum Optics , 2015 .

[90]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[91]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[92]  Andreas Knorr,et al.  Hot electron relaxation and phonon dynamics in graphene , 2007 .

[93]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[94]  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. , 2014, Nature communications.

[95]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[96]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[97]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[98]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[99]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[100]  R. Lake,et al.  Direct Bandgap Transition in Many‐Layer MoS2 by Plasma‐Induced Layer Decoupling , 2015, Advanced materials.

[101]  Aaron M. Jones,et al.  Supplementary Materials Magnetic Control of Valley Pseudospin in Monolayer WSe2 , 2014, 1407.2645.

[102]  M. N. Makhonin,et al.  Electrically pumped single-defect light emitters in WSe2 , 2016, 1605.01921.