The Global Methane Budget: 2000–2012

Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottomup estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30 N) compared to https://doi.org/10.5194/essd-12-1561-2020 Earth Syst. Sci. Data, 12, 1561–1623, 202

Makoto Saito | Peter Bergamaschi | Catherine Prigent | Atsushi Takizawa | Philippe Ciais | Christine Wiedinmyer | Paul Steele | Yukio Yoshida | Isobel J. Simpson | Sander Houweling | Shamil Maksyutov | Glen P. Peters | Ronald G. Prinn | Nicolas Viovy | Mihai Alexe | Patrick M. Crill | Philippe Bousquet | David Bastviken | Isamu Morino | Victor Brovkin | Greet Janssens-Maenhout | Jean-Francois Lamarque | Kyle C. McDonald | Josep G. Canadell | Prabir K. Patra | Changhui Peng | Qiuan Zhu | Joe R. Melton | Lena Höglund-Isaksson | David J. Wilton | David J. Beerling | Fortunat Joos | Hanqin Tian | Christian Frankenberg | Edward J. Dlugokencky | Vivek K. Arora | Thomas Kleinen | Shushi Peng | William J. Riley | Debra Wunch | Cyril Crevoisier | Toshinobu Machida | Andy Wiltshire | Heon-Sook Kim | Zhen Zhang | Bowen Zhang | Julia Marshall | Michiel van Weele | Apostolos Voulgarakis | Xiyan Xu | Simona Castaldi | Akihiko Ito | Francesco N. Tubiello | Giuseppe Etiope | Ray F. Weiss | Ray L. Langenfelds | Lori Bruhwiler | Michel Ramonet | Marielle Saunois | V. Brovkin | Shamil Maksyutov | R. Weiss | J. Lamarque | C. Prigent | H. Tian | J. Canadell | R. Jackson | P. Ciais | A. Ito | F. Joos | C. Peng | Bowen Zhang | P. Crill | S. Houweling | C. Frankenberg | D. Wunch | G. Janssens‑Maenhout | E. Dlugokencky | M. Saunois | B. Poulter | P. Bergamaschi | G. Peters | A. Voulgarakis | D. Blake | R. Prinn | P. Krummel | I. Simpson | G. Brailsford | D. Wilton | A. Takizawa | M. Ishizawa | K. McDonald | G. V. D. Werf | N. Viovy | F. Tubiello | S. Peng | Qiu'an Zhu | P. Bousquet | V. Arora | C. Crevoisier | T. Machida | P. Patra | C. Wiedinmyer | M. Ramonet | J. Melton | G. Etiope | R. Langenfelds | Xiyan Xu | D. Beerling | N. Gedney | M. Weele | D. Bastviken | L. Bruhwiler | S. Castaldi | C. Curry | L. Höglund-Isaksson | T. Kleinen | I. Morino | S. O'Doherty | W. Riley | Y. Tohjima | D. Worthy | Y. Yoshida | Zhen Zhang | A. Peregon | M. Alexe | Heon-Sook Kim | R. Locatelli | J. Marshall | F. Parmentier | I. Pison | M. Saito | R. Spahni | P. Steele | A. Wiltshire | R. Schroder | Brett F. Thorton | Donald R. Blake | N. Gedney | Yasunori Tohjima | Simon O'Doherty | Renato Spahni | Paul B. Krummel | I. Pison | Guido R. van der Werf | Charles L. Curry | Ben Poulter | Anna Peregon | Robert B. Jackson | Frans-Jan W. Parmentier | Doug Worthy | Gordon Brailsford | Misa Ishizawa | Robin Locatelli | Ronny Schroder

[1]  V. Linnenbom,et al.  Methane concentrations in various marine environments , 1973 .

[2]  D. Ehhalt The atmospheric cycle of methane , 1974 .

[3]  Ralph J. Cicerone,et al.  Sources of atmospheric methane: Measurements in rice paddies and a discussion , 1981 .

[4]  Guy Brasseur,et al.  Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere , 1984 .

[5]  P. H. Abelson Waste management. , 1985, Science.

[6]  D. Blake,et al.  World-wide increase in tropospheric methane, 1978–1983 , 1986 .

[7]  P. Fraser,et al.  Termites and global methane—another assessment , 1986 .

[8]  P. Crutzen,et al.  Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans , 1986 .

[9]  Inez Y. Fung,et al.  Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources , 1987 .

[10]  A. J. Crawford,et al.  The global distribution of methane in the troposphere , 1987 .

[11]  R. Garcia,et al.  The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere , 1988 .

[12]  W. Seiler,et al.  Influence of the surface microlayer on the flux of nonconservative trace gases (CO, H2, CH4, N2O) across the ocean-atmosphere interface , 1988 .

[13]  R. Cicerone,et al.  Biogeochemical aspects of atmospheric methane , 1988 .

[14]  K. R. Everett,et al.  Glossary of Permafrost and Related Ground-Ice Terms , 1989 .

[15]  K. Shine,et al.  Intergovernmental panel on Climate change (IPCC),in encyclopedia of Enviroment and society,Vol.3 , 2007 .

[16]  S. Murayama,et al.  Measurements of atmospheric methane at the Japanese Antarctic Station, Syowa , 1992 .

[17]  W. Lewis,et al.  Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies , 1992 .

[18]  Toshinobu Machida,et al.  Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre‐industrial/pre‐agricultural era , 1993 .

[19]  J. Schwander,et al.  Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP , 1993, Nature.

[20]  G. Lambert,et al.  Reevaluation of the oceanic flux of methane: Uncertainties and long term variations , 1993 .

[21]  M. Andreae,et al.  Methane in the Baltic and North Seas and a Reassessment of the Marine Emissions of Methane , 1994 .

[22]  D. Schimel,et al.  Ecosystem and physiological controls over methane production in northern wetlands , 1994 .

[23]  E. T. Kanemasu,et al.  Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines , 1995 .

[24]  M. Sanderson Biomass of termites and their emissions of methane and carbon dioxide: A global database , 1996 .

[25]  P. Crutzen,et al.  Methane emission measurements in urban areas in Eastern Germany , 1996 .

[26]  Pieter P. Tans,et al.  Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux , 1996 .

[27]  T. Bates,et al.  A reevaluation of the open ocean source of methane to the atmosphere , 1996 .

[28]  Paul J. Crutzen,et al.  Changing concentration, lifetime and climate forcing of atmospheric methane , 1998 .

[29]  D. Schimel,et al.  Atmospheric Chemistry and Greenhouse Gases , 1999 .

[30]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[31]  A. Ridgwell,et al.  Consumption of atmospheric methane by soils: A process‐based model , 1999 .

[32]  R. Francey,et al.  High Precision Long-Term Monitoring of Radiatively Active and Related Trace Gases at Surface Sites and from Aircraft in the Southern Hemisphere Atmosphere , 1999 .

[33]  R. Upstill‐Goddard,et al.  Methane in the southern North Sea: Low‐salinity inputs, estuarine removal, and atmospheric flux , 2000 .

[34]  R. Weiss,et al.  A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE , 2000 .

[35]  P. Claus,et al.  Phosphate Inhibits Acetotrophic Methanogenesis on Rice Roots , 2000, Applied and Environmental Microbiology.

[36]  W. Reeburgh,et al.  Attention turns to naturally occurring methane seepage , 2001 .

[37]  D. Clague,et al.  An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere , 2002 .

[38]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[39]  R. Weiss,et al.  In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences , 2002 .

[40]  R. Seifert,et al.  Methane distribution in European tidal estuaries , 2002 .

[41]  Katharine Hayhoe,et al.  Atmospheric methane and global change , 2002 .

[42]  E. Atlas,et al.  Carbon and hydrogen isotopic compositions of stratospheric methane: 2. Two-dimensional model results and implications for kinetic isotope effects , 2003 .

[43]  T. Röckmann,et al.  The isotopic composition of methane in the stratosphere , 2003 .

[44]  Philippe Ciais,et al.  Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks , 2004, Global Biogeochemical Cycles.

[45]  R. Rame Plant-mediated methane emission from an Indian mangrove , 2004 .

[46]  Peter Bergamaschi,et al.  Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models , 2004 .

[47]  P. Döll,et al.  Development and validation of a global database of lakes, reservoirs and wetlands , 2004 .

[48]  Jonathan J. Cole,et al.  Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate , 2004 .

[49]  Ronald G. Prinn,et al.  Joint Program on the Science and Policy of Global Change Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes During the Past Century : A Retrospective Analysis with a Process-Based Biogeochemistry Model , 2004 .

[50]  U. Platt,et al.  Hemispheric average Cl atom concentration from 13 C/ 12 C ratios in atmospheric methane , 2004 .

[51]  P. M. Lang,et al.  Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale , 2005 .

[52]  Peter Bergamaschi,et al.  Carbon Monoxide, Methane and Carbon Dioxide Columns Retrieved from SCIAMACHY by WFM-DOAS: Year 2003 Initial Data Set , 2005 .

[53]  Jeffery B. Klauda,et al.  Global Distribution of Methane Hydrate in Ocean Sediment , 2005 .

[54]  Xiangming Xiao,et al.  Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice agriculture of China , 2005 .

[55]  J. Lelieveld,et al.  Greenhouse gases: Low methane leakage from gas pipelines , 2005, Nature.

[56]  G. Brailsford,et al.  Interannual variation of 13C in tropospheric methane: Implications for a possible atomic chlorine sink in the marine boundary layer , 2005 .

[57]  S. Whalen,et al.  Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere , 2005 .

[58]  J. F. Meirink,et al.  Assessing Methane Emissions from Global Space-Borne Observations , 2005, Science.

[59]  Reiner Wassmann,et al.  Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model , 2005 .

[60]  Alexei V. Milkov,et al.  Molecular and stable isotope compositions of natural gas hydrates : A revised global dataset and basic interpretations in the context of geological settings , 2005 .

[61]  D. Lowe,et al.  The atmospheric cycling of radiomethane and the "fossil fraction" of the methane source , 2006 .

[62]  Sandrine Richard,et al.  Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers , 2006 .

[63]  R. Prinn,et al.  Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model , 2006 .

[64]  D. Etheridge,et al.  Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us? , 2006 .

[65]  J. Downing,et al.  The global abundance and size distribution of lakes, ponds, and impoundments , 2006 .

[66]  F. Keppler,et al.  Methane emissions from terrestrial plants under aerobic conditions , 2006, Nature.

[67]  K. Minkkinen,et al.  Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry , 2006, Plant and Soil.

[68]  J. B. Miller,et al.  Contribution of anthropogenic and natural sources to atmospheric methane variability , 2006, Nature.

[69]  L. Verchot,et al.  A global inventory of the soil CH4 sink , 2007 .

[70]  A. Schapendonk,et al.  No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. , 2007, The New phytologist.

[71]  C. Curry,et al.  Modeling the soil consumption of atmospheric methane at the global scale , 2007 .

[72]  D. Lowe,et al.  Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements , 2007 .

[73]  A. Tsuda,et al.  Carbon isotopic characterization for the origin of excess methane in subsurface seawater , 2008 .

[74]  Jing Zhang,et al.  Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes , 2008 .

[75]  C. Duarte,et al.  Blue Carbon: The role of healthy oceans in binding carbon , 2008 .

[76]  G. Etiope,et al.  Reappraisal of the fossil methane budget and related emission from geologic sources , 2008 .

[77]  A. Bondeau,et al.  Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model , 2009 .

[78]  A. Richter,et al.  Effect of emission changes in Southeast Asia on global hydroxyl and methane lifetime , 2009 .

[79]  C. Berndt,et al.  Escape of methane gas from the seabed along the West Spitsbergen continental margin , 2009 .

[80]  K. Yagi,et al.  Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines , 2009 .

[81]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[82]  Alain Chedin,et al.  Tropospheric methane in the tropics – first year from IASI hyperspectral infrared observations , 2009 .

[83]  M. Andreae,et al.  Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic , 2009 .

[84]  P. Crill,et al.  Emission of methane from plants , 2009, Proceedings of the Royal Society B: Biological Sciences.

[85]  P. M. Lang,et al.  Observational constraints on recent increases in the atmospheric CH4 burden , 2009 .

[86]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[87]  K. Bronstein,et al.  Greenhouse gas emissions estimation methodologies for biogenic emissions from selected source categories: Solid waste disposal, wastewater treatment, ethanol fermentation , 2010 .

[88]  P. Ciais,et al.  New Insights on the Chemical Composition of the Siberian Air Shed From The Yak-Aerosib Aircraft Campaigns , 2010 .

[89]  Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia , 2010 .

[90]  H. Tian,et al.  Interactive comment on “ Spatial and temporal patterns of CH 4 and N 2 O fluxes in terrestrial ecosystems of North America during 1979 – 2008 : application of a global biogeochemistry model ” by H , 2022 .

[91]  M. Shearer,et al.  Emissions of anaerobically produced methane by trees , 2010 .

[92]  H. Tian,et al.  Attribution of spatial and temporal variations in terrestrial methane flux over North America , 2010 .

[93]  I. Semiletov,et al.  Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf , 2010, Science.

[94]  D. Davydov,et al.  Continuous measurements of methane from a tower network over Siberia , 2010 .

[95]  Tatsuya Yokota,et al.  Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra , 2010 .

[96]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[97]  S. Madronich,et al.  Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. , 2010, The New phytologist.

[98]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[99]  I. Prentice,et al.  Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1 , 2010 .

[100]  J. Thornton,et al.  A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry , 2010, Nature.

[101]  S. K. Akagi,et al.  Emission factors for open and domestic biomass burning for use in atmospheric models , 2010 .

[102]  A. Borges,et al.  Carbon dioxide and methane dynamics in estuaries , 2010 .

[103]  Victor Brovkin,et al.  A dynamic model of wetland extent and peat accumulation: Results for the Holocene , 2011 .

[104]  Pierre Friedlingstein,et al.  Climate-CH 4 feedback from wetlands and its interaction with the climate-CO 2 feedback , 2011 .

[105]  W. Oechel,et al.  An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions , 2011 .

[106]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[107]  Patrick M. Crill,et al.  Freshwater Methane Emissions Offset the Continental Carbon Sink , 2011, Science.

[108]  G. Janssens-Maenhout,et al.  Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements , 2011 .

[109]  Merritt N. Deeter,et al.  Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT) , 2011 .

[110]  M. Liu,et al.  Spatial and temporal patterns of CO2 and CH4 fluxes in China's croplands in response to multifactor environmental changes , 2011 .

[111]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[112]  Shamil Maksyutov,et al.  Regional methane emission from West Siberia mire landscapes , 2011 .

[113]  P. Ciais,et al.  Climate-CH 4 feedback from wetlands and its interaction with the climate-CO 2 feedback , 2011 .

[114]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  W. J. Riley,et al.  Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM , 2011 .

[116]  Shamil Maksyutov,et al.  TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere , 2011 .

[117]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[118]  H. Tian,et al.  Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes , 2011 .

[119]  Hartmut Boesch,et al.  Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground‐based TCCON data and model calculations , 2011 .

[120]  E. Dlugokencky,et al.  Global atmospheric methane: budget, changes and dangers , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[121]  J. Randerson,et al.  Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources , 2011, Nature.

[122]  H. Tian,et al.  Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming , 2011 .

[123]  Akihiko Kuze,et al.  Toward accurate CO_2 and CH_4 observations from GOSAT , 2011 .

[124]  P. Jöckel,et al.  Small Interannual Variability of Global Atmospheric Hydroxyl , 2011, Science.

[125]  A. Stohl,et al.  Arctic methane sources: Isotopic evidence for atmospheric inputs , 2011 .

[126]  Philippe Bousquet,et al.  Constraining global methane emissions and uptake by ecosystems , 2011 .

[127]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[128]  Akihiko Kuze,et al.  Toward accurate CO2 and CH4 observations from GOSAT , 2011 .

[129]  Michael J. Prather,et al.  Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions , 2012 .

[130]  Brendan G. McKie,et al.  Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning , 2012, Science.

[131]  J. Randerson,et al.  Global burned area and biomass burning emissions from small fires , 2012 .

[132]  Catherine Prigent,et al.  Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP) , 2012 .

[133]  Veronika Eyring,et al.  Analysis of Present Day and Future OH and Methane Lifetime in the ACCMIP Simulations , 2012 .

[134]  A. Ito,et al.  Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty , 2012 .

[135]  Nicola J. Blake,et al.  Long-term decline of global atmospheric ethane concentrations and implications for methane , 2012, Nature.

[136]  L. Cathles,et al.  A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea , 2012, Climatic Change.

[137]  Benjamin Poulter,et al.  Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP) , 2012 .

[138]  Christian Hensen,et al.  The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach , 2012 .

[139]  M. Bradford,et al.  Elevated methane concentrations in trees of an upland forest , 2012 .

[140]  J. Hartmann,et al.  Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins , 2012 .

[141]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[142]  R. Weiss,et al.  Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements , 2012 .

[143]  Kaarle Kupiainen,et al.  Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security , 2012, Science.

[144]  A. Ravishankara,et al.  Stratospheric ozone depletion due to nitrous oxide: influences of other gases , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[145]  Ilse Aben,et al.  Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms , 2012 .

[146]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[147]  J. Lamarque,et al.  Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[148]  J. Thornton,et al.  An MCM modeling study of nitryl chloride (ClNO 2 ) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow , 2013 .

[149]  Kaiguang Zhao,et al.  Mapping urban pipeline leaks: methane leaks across Boston. , 2013, Environmental pollution.

[150]  E. Hornibrook,et al.  Trees are major conduits for methane egress from tropical forested wetlands. , 2013, The New phytologist.

[151]  P. Ciais,et al.  Global carbon dioxide emissions from inland waters , 2013, Nature.

[152]  Peter Bergamaschi,et al.  A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements , 2013 .

[153]  James Thomas,et al.  Measurements of methane emissions at natural gas production sites in the United States , 2013, Proceedings of the National Academy of Sciences.

[154]  Peter Bergamaschi,et al.  Three decades of global methane sources and sinks , 2013 .

[155]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[156]  Adriana Gamazo,et al.  EURYDICE (2013): Key data on teachers and school leaders in Europe. 2013 edition Eurydice report (Luxembourg Publications Office of the European Union) , 2013 .

[157]  Tatsuya Yokota,et al.  Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data , 2013 .

[158]  Philippe Bousquet,et al.  Stable atmospheric methane in the 2000s: key-role of emissions from natural wetlands , 2013 .

[159]  Gabrielle Pétron,et al.  Methane emissions estimate from airborne measurements over a western United States natural gas field , 2013 .

[160]  Pete Smith,et al.  The FAOSTAT database of greenhouse gas emissions from agriculture , 2013 .

[161]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[162]  Yan Bai,et al.  Areas of the global major river plumes , 2013, Acta Oceanologica Sinica.

[163]  B. Mijling,et al.  Atmospheric Chemistry and Physics Regional Nitrogen Oxides Emission Trends in East Asia Observed from Space , 2022 .

[164]  E. Saikawa,et al.  Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition , 2013 .

[165]  C. Peng,et al.  Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate , 2013, Global change biology.

[166]  Peter Bergamaschi,et al.  Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements , 2013 .

[167]  M. Obersteiner,et al.  Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems , 2013, Proceedings of the National Academy of Sciences.

[168]  Guido Grosse,et al.  Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps , 2014 .

[169]  F. Joos,et al.  DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands , 2014 .

[170]  Jeffrey R. White,et al.  A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands , 2014, Global change biology.

[171]  S. O'Doherty,et al.  Comparisons of continuous atmospheric CH4, CO2 and N2O measurements - results from a travelling instrument campaign at Mace Head , 2014 .

[172]  C. Verpoorter,et al.  A global inventory of lakes based on high‐resolution satellite imagery , 2014 .

[173]  Robert W Howarth,et al.  Toward a better understanding and quantification of methane emissions from shale gas development , 2014, Proceedings of the National Academy of Sciences.

[174]  P. Giorgio,et al.  Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios , 2014, Global change biology.

[175]  P. Crill,et al.  Energy input is primary controller of methane bubbling in subarctic lakes , 2014 .

[176]  Gabrielle Pétron,et al.  A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver‐Julesburg Basin , 2014 .

[177]  E. Stanley,et al.  Ebullitive methane emissions from oxygenated wetland streams , 2014, Global change biology.

[178]  Patrick M. Crill,et al.  Methane dynamics regulated by microbial community response to permafrost thaw , 2014, Nature.

[179]  R. Weiss,et al.  Observational evidence for interhemispheric hydroxyl-radical parity , 2014, Nature.

[180]  C. Stubbs,et al.  Ebullition and storm-induced methane release from the East Siberian Arctic Shelf , 2014 .

[181]  R. Jackson,et al.  The Environmental Costs and Benefits of Fracking , 2014 .

[182]  Hartmut Boesch,et al.  Inverse modelling of CH 4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY , 2014 .

[183]  O. Schneising,et al.  Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data , 2014 .

[184]  D. Griffith,et al.  Retrieval of tropospheric column-averaged CH4 mole fraction by solar absorption FTIR-spectrometry using N2O as a proxy , 2014 .

[185]  J. André,et al.  Le méthane : d'où vient-il et quel son impact sur le climat ? , 2014 .

[186]  Diana R. Nemergut,et al.  Palm oil wastewater methane emissions and bioenergy potential , 2014 .

[187]  D. Wunch,et al.  Derivation of tropospheric methane from TCCON CH 4 and HF total column observations , 2014 .

[188]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[189]  Corinne Le Quéré,et al.  Carbon and Other Biogeochemical Cycles , 2014 .

[190]  Changhui Peng,et al.  Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model , 2014 .

[191]  O. Schneising,et al.  Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations , 2014 .

[192]  J. M. Eiler,et al.  Formation temperatures of thermogenic and biogenic methane , 2014, Science.

[193]  Barbara Zielinska,et al.  Air impacts of increased natural gas acquisition, processing, and use: a critical review. , 2014, Environmental science & technology.

[194]  G. Q. Chen,et al.  China's CH4 and CO2 emissions: Bottom-up estimation and comparative analysis , 2014 .

[195]  O. A. Castelán-Ortega,et al.  Modeling methane emissions and methane inventories for cattle production systems in Mexico , 2014 .

[196]  P. Ciais,et al.  Decadal trends in global CO emissions as seen by MOPITT , 2015 .

[197]  G. Dieckmann,et al.  Methane excess in Arctic surface water- triggered by sea ice formation and melting , 2015, Scientific Reports.

[198]  J. Greet,et al.  Part III: Total greenhouse gas emissions , 2015 .

[199]  Joe R. Melton,et al.  Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0 , 2015 .

[200]  F. Keppler,et al.  Evidence for methane production by marine algae , 2015 .

[201]  Mark S. Zahniser,et al.  Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts , 2015, Proceedings of the National Academy of Sciences.

[202]  Ray F. Weiss,et al.  Atmospheric methane evolution the last 40 years , 2015 .

[203]  M. Alawi,et al.  Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea) , 2015 .

[204]  Hong Jiang,et al.  Estimating global natural wetland methane emissions using process modelling: spatio-temporal patterns and contributions to atmospheric methane fluctuations , 2015 .

[205]  R. Weiss,et al.  Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006 , 2015 .

[206]  Q. Zhuang,et al.  Methane emissions from pan‐Arctic lakes during the 21st century: An analysis with process‐based models of lake evolution and biogeochemistry , 2015 .

[207]  Philippe Bousquet,et al.  Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations , 2015 .

[208]  Anthony J. Marchese,et al.  Reconciling divergent estimates of oil and gas methane emissions , 2015, Proceedings of the National Academy of Sciences.

[209]  Touché Howard,et al.  Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. , 2015, Environmental science & technology.

[210]  P. Ciais,et al.  Long-lived atmospheric trace gases measurements in flask samples from three stations in India , 2015 .

[211]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[212]  Kostas Tsigaridis,et al.  Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions , 2015 .

[213]  A. Borges,et al.  Globally significant greenhouse-gas emissions from African inland waters , 2015 .

[214]  E. Dlugokencky,et al.  Atmospheric constraints on the methane emissions from the East Siberian Shelf , 2015 .

[215]  G. Janssens‑Maenhout,et al.  Anthropogenic methane sources, emissions and future projections , 2015 .

[216]  B. Poulter,et al.  Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties , 2015 .

[217]  P. Ciais,et al.  Reduced carbon emission estimates from fossil fuel combustion and cement production in China , 2015, Nature.

[218]  G. Rhoderick,et al.  Methane standards made in whole and synthetic air compared by cavity ring down spectroscopy and gas chromatography with flame ionization detection for atmospheric monitoring applications. , 2015, Analytical chemistry.

[219]  Thomas Dubos,et al.  DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility , 2015 .

[220]  H. Eskes,et al.  A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data , 2015 .

[221]  P. M. Lang,et al.  Seasonal climatology of CO2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network , 2015 .

[222]  Hanqin Tian,et al.  Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes , 2015 .

[223]  Arctic Monitoring,et al.  AMAP Assessment 2015: Methane as an Arctic climate forcer. , 2015 .

[224]  A. Biastoch,et al.  Modeling the fate of methane hydrates under global warming , 2015 .

[225]  Sandro Federici,et al.  New estimates of CO 2 forest emissions and removals : 1990 – 2015 q , 2015 .

[226]  Keith A. Smith,et al.  Emission of methane, carbon monoxide, carbon dioxide and short‐chain hydrocarbons from vegetation foliage under ultraviolet irradiation , 2015, Plant, cell & environment.

[227]  H. Tian,et al.  Landscape-level terrestrial methane flux observed from a very tall tower , 2015 .

[228]  M. Santini,et al.  Changes in the world rivers’ discharge projected from an updated high resolution dataset of current and future climate zones , 2015 .

[229]  Jed O. Kaplan,et al.  WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia , 2015 .

[230]  E. Hornibrook,et al.  The contribution of trees to ecosystem methane emissions in a temperate forested wetland , 2015, Global change biology.

[231]  Jeff Peischl,et al.  Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions , 2015 .

[232]  S. Joye,et al.  The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[233]  Daniel C. Anderson,et al.  Quantifying the causes of differences in tropospheric OH within global models , 2015 .

[234]  Charlotte Scheutz,et al.  Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant , 2015 .

[235]  Birgit Heim,et al.  A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data , 2015, International journal of remote sensing.

[236]  G. Etiope Natural Gas Seepage: The Earth’s Hydrocarbon Degassing , 2015 .

[237]  Peter Bergamaschi,et al.  U.S. CH4 emissions from oil and gas production: Have recent large increases been detected? , 2016 .

[238]  P. Raymond,et al.  Large contribution to inland water CO2 and CH4 emissions from very small ponds , 2016 .

[239]  R. Thompson,et al.  Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion , 2016 .

[240]  David Bastviken,et al.  Climate-sensitive northern lakes and ponds are critical components of methane release , 2016 .

[241]  C. Sweeney,et al.  AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH 4 and CO 2 , 2016 .

[242]  Pieter P. Tans,et al.  Upward revision of global fossil fuel methane emissions based on isotope database , 2016, Nature.

[243]  P. Tans,et al.  Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China , 2016 .

[244]  Qiang Yu,et al.  Methane emissions from the trunks of living trees on upland soils. , 2016, The New phytologist.

[245]  V. Brovkin,et al.  The Global Methane Budget 2000–2017 , 2016, Earth System Science Data.

[246]  B. Lehner,et al.  Estimating the volume and age of water stored in global lakes using a geo-statistical approach , 2016, Nature Communications.

[247]  Patrick M. Crill,et al.  Double‐counting challenges the accuracy of high‐latitude methane inventories , 2016 .

[248]  C. Frankenberg,et al.  Inverse modeling of pan-Arctic methane emissions at high spatial resolution:what can we learn from assimilating satellite retrievals and using differentprocess-based wetland and lake biogeochemical models? , 2016 .

[249]  D. Labat,et al.  Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH 4 emissions from a subtropical hydroelectric reservoir , 2016 .

[250]  Thomas Kaminski,et al.  Global inverse modeling of CH4 sources and sinks: An overview of methods , 2016 .

[251]  Philippe Bousquet,et al.  Rising atmospheric methane: 2007–2014 growth and isotopic shift , 2016 .

[252]  M. Chipperfield,et al.  A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation , 2016 .

[253]  Ilse Aben,et al.  Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010 , 2016 .

[254]  Eric A. Kort,et al.  Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002-2012) , 2016 .

[255]  T. Laurila,et al.  Large contribution of boreal upland forest soils to a catchment‐scale CH4 balance in a wet year , 2016 .

[256]  Tatsuya Yokota,et al.  Bias corrections of GOSAT SWIR XCO2 and XCH4 with TCCON data and their evaluation using aircraft measurement data , 2016 .

[257]  Geoffrey C. Toon,et al.  Quantifying the loss of processed natural gas within California's South Coast Air Basin using long-term measurements of ethane and methane , 2016 .

[258]  G. Myhre,et al.  Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing , 2016 .

[259]  P. Crill,et al.  Methane fluxes from the sea to the atmosphere across the Siberian shelf seas , 2016 .

[260]  L. Bian,et al.  CH4 Monitoring and Background Concentration at Zhongshan Station, Antarctica , 2016 .

[261]  A. Ito,et al.  A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 2: Optimization scheme and identical twin experiment of atmospheric CO 2 inversion , 2016 .

[262]  Y. Niwa,et al.  A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) - Part 1: Offline forward and adjoint transport models , 2016 .

[263]  E. Delong,et al.  Marine methane paradox explained by bacterial degradation of dissolved organic matter , 2016 .

[264]  F. Keppler,et al.  Evidence for methane production by the marine algae Emiliania huxleyi , 2016 .

[265]  P. Crill,et al.  Biased sampling of methane release from northern lakes: A problem for extrapolation , 2016 .

[266]  Philippe Ciais,et al.  Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010 , 2016 .

[267]  Samuel T. Christel,et al.  The ecology of methane in streams and rivers: patterns, controls, and global significance , 2016 .

[268]  Pierre Friedlingstein,et al.  The terrestrial biosphere as a net source of greenhouse gases to the atmosphere , 2016, Nature.

[269]  T. Treude,et al.  Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review , 2016 .

[270]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[271]  J. Chanton,et al.  Present-day permafrost carbon feedback from thermokarst lakes , 2016 .

[272]  P. Crill,et al.  Spatio‐temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates , 2016 .

[273]  John Robinson,et al.  The Total Carbon Column Observing Network site description for Lauder, New Zealand , 2017 .

[274]  Christopher S. Miller,et al.  Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions , 2017, Nature Communications.

[275]  V. Brovkin,et al.  Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics , 2017 .

[276]  S. Houweling,et al.  Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0 , 2017 .

[277]  V. Arora,et al.  An assessment of natural methane fluxes simulated by the CLASS-CTEM model , 2017, Biogeosciences.

[278]  Merritt N. Deeter,et al.  Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016 , 2017 .

[279]  Jens Mühle,et al.  Role of atmospheric oxidation in recent methane growth , 2017, Proceedings of the National Academy of Sciences.

[280]  F. Pérez-Barbería Scaling methane emissions in ruminants and global estimates in wild populations. , 2017, The Science of the total environment.

[281]  S. Pandey,et al.  Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget , 2017, Nature Communications.

[282]  H. Tian,et al.  Methane emission from global livestock sector during 1890–2014: Magnitude, trends and spatiotemporal patterns , 2017, Global change biology.

[283]  Jeffrey L. Anderson,et al.  Chemical Feedback From Decreasing Carbon Monoxide Emissions , 2017 .

[284]  E. Young,et al.  A model for 12CH2D2 and 13CH3D as complementary tracers for the budget of atmospheric CH4 , 2017 .

[285]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[286]  Jinwei Dong,et al.  A global moderate resolution dataset of gross primary production of vegetation for 2000–2016 , 2017, Scientific Data.

[287]  Samuel Hammer,et al.  Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations , 2017 .

[288]  Martin Wirth,et al.  MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane , 2017, Remote. Sens..

[289]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[290]  J. Megonigal,et al.  Temperate forest methane sink diminished by tree emissions. , 2015, The New phytologist.

[291]  Andrea Stenke,et al.  Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) , 2017 .

[292]  Lianhai Wu,et al.  Higher yields and lower methane emissions with new rice cultivars , 2017, Global change biology.

[293]  John Robinson,et al.  The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005 , 2017 .

[294]  R. Weiss,et al.  Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event , 2017, Nature.

[295]  S. Saatchi,et al.  Greenhouse gas emissions intensity of global croplands , 2017 .

[296]  Luana S. Basso,et al.  Large emissions from floodplain trees close the Amazon methane budget , 2017, Nature.

[297]  Martin Herold,et al.  An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor , 2017, Global change biology.

[298]  Shamil Maksyutov,et al.  Variability and quasi-decadal changes in the methane budget over the period 2000–2012 , 2017, Atmospheric Chemistry and Physics.

[299]  Lena Höglund-Isaksson,et al.  Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012 , 2017 .

[300]  Meng Li,et al.  Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) , 2017 .

[301]  P. Salameh,et al.  Greenhouse gas measurements from a UK network of tall towers: technical description and first results , 2017 .

[302]  C. Duarte,et al.  Methane Production by Seagrass Ecosystems in the Red Sea , 2017, Front. Mar. Sci..

[303]  Christian Frankenberg,et al.  Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl , 2017, Proceedings of the National Academy of Sciences.

[304]  S. Dhomse,et al.  Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations , 2017 .

[305]  B. Poulter,et al.  Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions , 2018 .

[306]  P. Ciais,et al.  On the Role of the Flaming to Smoldering Transition in the Seasonal Cycle of African Fire Emissions , 2018, Geophysical Research Letters.

[307]  C. Bacour,et al.  Error Budget of the MEthane Remote LIdar missioN and Its Impact on the Uncertainties of the Global Methane Budget , 2018, Journal of Geophysical Research: Atmospheres.

[308]  P. Patra,et al.  Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM) , 2018 .

[309]  L. Höglund-Isaksson,et al.  Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes , 2018, Advances in Geosciences.

[310]  R. Parker,et al.  Attribution of recent increases in atmospheric methane through 3-D inverse modelling , 2018, Atmospheric Chemistry and Physics.

[311]  Wouter Peters,et al.  A UAV-based active AirCore system for measurements of greenhouse gases , 2018 .

[312]  M. Dunbabin,et al.  The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia , 2018, Hydrology and Earth System Sciences.

[313]  P. Jöckel,et al.  A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane , 2018, Atmospheric Chemistry and Physics.

[314]  B. Eyre,et al.  Methane emissions partially offset “blue carbon” burial in mangroves , 2018, Science Advances.

[315]  Haili Hu,et al.  Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT , 2018 .

[316]  F. Murguia-Flores,et al.  Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil , 2017, Geoscientific Model Development.

[317]  P. Ciais,et al.  Atmospheric monitoring and inverse modelling for verification of greenhouse gas inventories , 2018 .

[318]  A. Turner,et al.  Modulation of hydroxyl variability by ENSO in the absence of external forcing , 2018, Proceedings of the National Academy of Sciences.

[319]  M. Omara,et al.  Assessment of methane emissions from the U.S. oil and gas supply chain , 2018, Science.

[320]  L. H. öglund-Isaksson Global anthropogenic methane emissions 2005 – 2030 : technical mitigation potentials and costs , 2022 .