Latent Tree Analysis

Latent tree analysis seeks to model the correlations among a set of random variables using a tree of latent variables. It was proposed as an improvement to latent class analysis --- a method widely used in social sciences and medicine to identify homogeneous subgroups in a population. It provides new and fruitful perspectives on a number of machine learning areas, including cluster analysis, topic detection, and deep probabilistic modeling. This paper gives an overview of the research on latent tree analysis and various ways it is used in practice.

[1]  Y. Li,et al.  Subtypes of major depression: latent class analysis in depressed Han Chinese women , 2014, Psychological Medicine.

[2]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[3]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[4]  Ankur P. Parikh,et al.  Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning , 2014, 1401.3940.

[5]  Leonard K. M. Poon,et al.  Progressive EM for Latent Tree Models and Hierarchical Topic Detection , 2015, AAAI.

[6]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[7]  Song Han,et al.  Learning both Weights and Connections for Efficient Neural Network , 2015, NIPS.

[8]  Dit-Yan Yeung,et al.  Sparse Boltzmann Machines with Structure Learning as Applied to Text Analysis , 2017, AAAI.

[9]  Tao Chen,et al.  Latent tree models and diagnosis in traditional Chinese medicine , 2008, Artif. Intell. Medicine.

[10]  Chen Fu,et al.  Identification and classification of TCM syndrome types among patients with vascular mild cognitive impairment using latent tree analysis , 2016, ArXiv.

[11]  Sergey Kirshner Latent Tree Copulas , 2012 .

[12]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[13]  Maja Pantic,et al.  Latent trees for estimating intensity of Facial Action Units , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Vincent Y. F. Tan,et al.  Learning Latent Tree Graphical Models , 2010, J. Mach. Learn. Res..

[15]  Tao Chen,et al.  Model-based multidimensional clustering of categorical data , 2012, Artif. Intell..

[16]  Justin Dauwels,et al.  Latent tree ensemble of pairwise copulas for spatial extremes analysis , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[17]  Tao Chen,et al.  Latent Tree Models and Approximate Inference in Bayesian Networks , 2008, AAAI.

[18]  Tao Chen,et al.  Variable Selection in Model-Based Clustering: To Do or To Facilitate , 2010, ICML.

[19]  Tengfei Liu,et al.  A Survey on Latent Tree Models and Applications , 2013, J. Artif. Intell. Res..

[20]  Tandy J. Warnow,et al.  A few logs suffice to build (almost) all trees (I) , 1999, Random Struct. Algorithms.

[21]  Tengfei Liu,et al.  A Model-Based Approach to Rounding in Spectral Clustering , 2012, UAI.

[22]  Neil Henry Latent structure analysis , 1969 .

[23]  Furong Huang,et al.  Scalable Latent Tree Model and its Application to Health Analytics , 2017 .

[24]  Ian Davidson,et al.  A principled and flexible framework for finding alternative clusterings , 2009, KDD.

[25]  J. Reitsma,et al.  Latent class models in diagnostic studies when there is no reference standard--a systematic review. , 2014, American journal of epidemiology.

[26]  Michael I. Jordan,et al.  Multiple Non-Redundant Spectral Clustering Views , 2010, ICML.

[27]  James Bailey,et al.  COALA: A Novel Approach for the Extraction of an Alternate Clustering of High Quality and High Dissimilarity , 2006, Sixth International Conference on Data Mining (ICDM'06).

[28]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[29]  Thomas Hofmann,et al.  Non-redundant data clustering , 2006, Knowledge and Information Systems.

[30]  Tengfei Liu,et al.  Hierarchical Latent Tree Analysis for Topic Detection , 2014, ECML/PKDD.

[31]  Linda M. Collins,et al.  Latent class and latent transition analysis , 2009 .

[32]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[33]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[34]  Ying Cui,et al.  Non-redundant Multi-view Clustering via Orthogonalization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[35]  Inderjit S. Dhillon,et al.  Simultaneous Unsupervised Learning of Disparate Clusterings , 2008, Stat. Anal. Data Min..

[36]  Nevin Lianwen Zhang,et al.  Hierarchical latent class models for cluster analysis , 2002, J. Mach. Learn. Res..

[37]  Chong Wang,et al.  Nested Hierarchical Dirichlet Processes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[39]  Leonard K. M. Poon,et al.  Unidimensional Clustering of Discrete Data Using Latent Tree Models , 2015, AAAI.

[40]  Tengfei Liu,et al.  Greedy learning of latent tree models for multidimensional clustering , 2013, Machine Learning.

[41]  Andrew McCallum,et al.  Optimizing Semantic Coherence in Topic Models , 2011, EMNLP.

[42]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[43]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..