The tessellation problem of quantum walks
暂无分享,去创建一个
Celina M. H. de Figueiredo | Luis Antonio Brasil Kowada | Renato Portugal | Franklin L. Marquezino | Alexandre Santiago de Abreu | Luís Felipe I. Cunha | Tharso D. Fernandes | Daniel Posner | R. Portugal | T. Fernandes | F. Marquezino | L. Kowada | D. Posner | A. Abreu | L. Cunha | C. Figueiredo
[1] Yue Zhao,et al. Planar Graphs of Maximum Degree Seven are Class I , 2001, J. Comb. Theory B.
[2] Jayme Luiz Szwarcfiter,et al. On clique-perfect and K-perfect graphs , 2006, Ars Comb..
[3] Jeremy P. Spinrad,et al. Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.
[4] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[5] Nick Roussopoulos,et al. A MAX{m, n} Algorithm for Determining the Graph H from Its Line Graph C , 1973, Inf. Process. Lett..
[6] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[7] Leizhen Cai,et al. NP-completeness of edge-colouring some restricted graphs , 1991, Discret. Appl. Math..
[8] F. Protti,et al. Clique-inverse graphs of bipartite graphs , 2004 .
[9] Dale Peterson,et al. Gridline graphs: a review in two dimensions and an extension to higher dimensions , 2003, Discret. Appl. Math..
[10] Salvador Elías Venegas-Andraca,et al. Quantum walks: a comprehensive review , 2012, Quantum Information Processing.
[11] Iwao Sato,et al. Partition-based discrete-time quantum walks , 2017, Quantum Inf. Process..
[12] M. Garey. Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .
[13] Kathryn Fraughnaugh,et al. Introduction to graph theory , 1973, Mathematical Gazette.
[14] J. Szwarcfiter. A Survey on Clique Graphs , 2003 .
[15] Diamantis P. Koreas. The NP-completeness of chromatic index in triangle free graphs with maximum vertex of degree 3 , 1997 .
[16] Renato Portugal,et al. Staggered Quantum Walks on Graphs , 2016, 1603.02210.
[17] Renato Portugal,et al. The staggered quantum walk model , 2015, Quantum Information Processing.
[18] B. Reed,et al. Recent advances in algorithms and combinatorics , 2003 .
[20] Jan van Leeuwen,et al. Approximations for lambda-Colorings of Graphs , 2004, Comput. J..