Approximating Operator Norms via Generalized Krivine Rounding

We consider the $(\ell_p,\ell_r)$-Grothendieck problem, which seeks to maximize the bilinear form $y^T A x$ for an input matrix $A$ over vectors $x,y$ with $\|x\|_p=\|y\|_r=1$. The problem is equivalent to computing the $p \to r^*$ operator norm of $A$. The case $p=r=\infty$ corresponds to the classical Grothendieck problem. Our main result is an algorithm for arbitrary $p,r \ge 2$ with approximation ratio $(1+\epsilon_0)/(\sinh^{-1}(1)\cdot \gamma_{p^*} \,\gamma_{r^*})$ for some fixed $\epsilon_0 \le 0.00863$. Comparing this with Krivine's approximation ratio of $(\pi/2)/\sinh^{-1}(1)$ for the original Grothendieck problem, our guarantee is off from the best known hardness factor of $(\gamma_{p^*} \gamma_{r^*})^{-1}$ for the problem by a factor similar to Krivine's defect. Our approximation follows by bounding the value of the natural vector relaxation for the problem which is convex when $p,r \ge 2$. We give a generalization of random hyperplane rounding and relate the performance of this rounding to certain hypergeometric functions, which prescribe necessary transformations to the vector solution before the rounding is applied. Unlike Krivine's Rounding where the relevant hypergeometric function was $\arcsin$, we have to study a family of hypergeometric functions. The bulk of our technical work then involves methods from complex analysis to gain detailed information about the Taylor series coefficients of the inverses of these hypergeometric functions, which then dictate our approximation factor. Our result also implies improved bounds for "factorization through $\ell_{2}^{\,n}$" of operators from $\ell_{p}^{\,n}$ to $\ell_{q}^{\,m}$ (when $p\geq 2 \geq q$)--- such bounds are of significant interest in functional analysis and our work provides modest supplementary evidence for an intriguing parallel between factorizability, and constant-factor approximability.

[1]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[2]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[3]  Assaf Naor,et al.  Krivine schemes are optimal , 2012, 1205.6415.

[4]  J. Wissel,et al.  On the Best Constants in the Khintchine Inequality , 2007 .

[5]  Subhash Khot,et al.  Grothendieck‐Type Inequalities in Combinatorial Optimization , 2011, ArXiv.

[6]  Rishi Saket,et al.  Tight Hardness of the Non-commutative Grothendieck Problem , 2014, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[7]  A. Pietsch,et al.  Absolut p-summierende Abbildungen in normierten Räumen , 1967 .

[8]  Subhash Khot,et al.  SDP gaps and UGC-hardness for MAXCUTGAIN , 2006, IEEE Annual Symposium on Foundations of Computer Science.

[9]  G. Pisier,et al.  Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .

[10]  J. Lindenstrauss,et al.  Absolutely summing operators in Lp spaces and their applications , 1968 .

[11]  William B. Johnson,et al.  Factoring weakly compact operators , 1974 .

[12]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[13]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .

[14]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[15]  B. Maurey,et al.  Théorèmes de factorisation pour les opérateurs à valeurs dans un espace $L^P$ , 1973 .

[16]  Prasad Raghavendra,et al.  Towards computing the Grothendieck constant , 2009, SODA.

[17]  Mark Braverman,et al.  The Grothendieck Constant is Strictly Smaller than Krivine's Bound , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[18]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[19]  Subhash Khot,et al.  Approximate Kernel Clustering , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[20]  G. Pisier Grothendieck's Theorem, past and present , 2011, 1101.4195.

[21]  Joel A. Tropp,et al.  Column subset selection, matrix factorization, and eigenvalue optimization , 2008, SODA.

[22]  Frank Vallentin,et al.  Grothendieck Inequalities for Semidefinite Programs with Rank Constraint , 2010, Theory Comput..

[23]  Daureen Steinberg COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .

[24]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[25]  S. Kwapień,et al.  On operators factorizable through $L_p$ space , 1972 .

[26]  Daniel W. Lozier,et al.  NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.

[27]  Venkatesan Guruswami,et al.  Inapproximability of Matrix p→q Norms , 2018, Electron. Colloquium Comput. Complex..

[28]  J. Bourgain,et al.  Invertibility of ‘large’ submatrices with applications to the geometry of Banach spaces and harmonic analysis , 1987 .