Approximating Operator Norms via Generalized Krivine Rounding
暂无分享,去创建一个
Venkatesan Guruswami | Madhur Tulsiani | Euiwoong Lee | Vijay Bhattiprolu | Mrinalkanti Ghosh | V. Guruswami | Madhur Tulsiani | Euiwoong Lee | V. Bhattiprolu | Mrinalkanti Ghosh
[1] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .
[2] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[3] Assaf Naor,et al. Krivine schemes are optimal , 2012, 1205.6415.
[4] J. Wissel,et al. On the Best Constants in the Khintchine Inequality , 2007 .
[5] Subhash Khot,et al. Grothendieck‐Type Inequalities in Combinatorial Optimization , 2011, ArXiv.
[6] Rishi Saket,et al. Tight Hardness of the Non-commutative Grothendieck Problem , 2014, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[7] A. Pietsch,et al. Absolut p-summierende Abbildungen in normierten Räumen , 1967 .
[8] Subhash Khot,et al. SDP gaps and UGC-hardness for MAXCUTGAIN , 2006, IEEE Annual Symposium on Foundations of Computer Science.
[9] G. Pisier,et al. Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .
[10] J. Lindenstrauss,et al. Absolutely summing operators in Lp spaces and their applications , 1968 .
[11] William B. Johnson,et al. Factoring weakly compact operators , 1974 .
[12] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[13] Y. Ye,et al. Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .
[14] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization , 1998 .
[15] B. Maurey,et al. Théorèmes de factorisation pour les opérateurs à valeurs dans un espace $L^P$ , 1973 .
[16] Prasad Raghavendra,et al. Towards computing the Grothendieck constant , 2009, SODA.
[17] Mark Braverman,et al. The Grothendieck Constant is Strictly Smaller than Krivine's Bound , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[18] Stanisław Kwapień,et al. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .
[19] Subhash Khot,et al. Approximate Kernel Clustering , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[20] G. Pisier. Grothendieck's Theorem, past and present , 2011, 1101.4195.
[21] Joel A. Tropp,et al. Column subset selection, matrix factorization, and eigenvalue optimization , 2008, SODA.
[22] Frank Vallentin,et al. Grothendieck Inequalities for Semidefinite Programs with Rank Constraint , 2010, Theory Comput..
[23] Daureen Steinberg. COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .
[24] G. Pisier. Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .
[25] S. Kwapień,et al. On operators factorizable through $L_p$ space , 1972 .
[26] Daniel W. Lozier,et al. NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.
[27] Venkatesan Guruswami,et al. Inapproximability of Matrix p→q Norms , 2018, Electron. Colloquium Comput. Complex..
[28] J. Bourgain,et al. Invertibility of ‘large’ submatrices with applications to the geometry of Banach spaces and harmonic analysis , 1987 .