Thin metamaterial Luneburg lens for surface waves

By suitably patterning a metasurface, the phase velocity of surface waves may be manipulated. Here, a low-loss, thin (1/14th of the free-space wavelength), omnidirectional Luneburg lens, based upon a Sievenpiper ``mushroom'' array [Sievenpiper et al., IEEE Trans. Microwave Theory Tech. 47, 2059 (1999)], is fabricated and characterized at microwave frequencies. Surface waves excited using a near-field point source on the perimeter of the lens, exit the opposite side of the lens as planar wave fronts. The electric field of the surface wave is mapped out experimentally and compared to numerical simulations.

[1]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[2]  Werner Wiesbeck,et al.  A photonic bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas , 2001 .

[3]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[4]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[5]  S. Morgan,et al.  General Solution of the Luneberg Lens Problem , 1958 .

[6]  Ulf Leonhardt,et al.  Geometry and light: The science of invisibility , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[7]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[8]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[9]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[10]  Vincent Fusco,et al.  Printed holey plate Luneburg lens , 2008 .

[11]  J. Sambles,et al.  Experimental Verification of Designer Surface Plasmons , 2005, Science.

[12]  Young-Jin Park,et al.  Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts , 2002, IEEE Antennas and Wireless Propagation Letters.

[13]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[14]  M. J. Lockyear,et al.  Otto coupling to a transverse-electric-polarized mode on a metamaterial surface , 2011 .

[15]  Pfm Peter Smulders,et al.  Application of fan-beam antennas for 60 GHz indoor wireless communication , 2001 .

[16]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[17]  A. Sommerfeld Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes , 1899 .

[18]  M. J. Lockyear,et al.  Microwave surface-plasmon-like modes on thin metamaterials. , 2009, Physical review letters.

[19]  C. Walter,et al.  Surface-wave luneberg lens antennas , 1960 .

[20]  Didier Felbacq,et al.  Spatial dispersion in negative-index composite metamaterials , 2008 .

[21]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[22]  Qiang Cheng,et al.  A broadband metamaterial cylindrical lens antenna , 2010 .

[23]  F. Caminita,et al.  Non-Uniform Metasurface Luneburg Lens Antenna Design , 2012, IEEE Transactions on Antennas and Propagation.

[24]  Qiang Cheng,et al.  Broadband planar Luneburg lens based on complementary metamaterials , 2009 .

[25]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[26]  Ning Wang,et al.  Broadband microwave Luneburg lens made of gradient index metamaterials. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  The Electromagnetic Theory of Three-Dimensional Inhomogeneous Lenses and the Dyadic Green's Functions for Cavities , 1974 .

[28]  G. Peeler,et al.  A two-dimensional microwave luneberg lens , 1953 .

[29]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .