Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range

This paper reviews and summarizes the progress in research on high-Tc superconducting infrared bolometers since the discovery of high-temperature superconductor (HTSC) materials. After mentioning previous review articles and their particular themes in the introduction, we recall bolometer basics in section 2, where key parameters are presented and design principles summarized. The latter include incident radiation to HTSC thermometer coupling techniques (absorber and antenna approaches) and the thermal balance inside the active region. Section 3 (which forms the largest part of the article) is devoted to medium and near-infrared transition edge bolometers (0.8-20 µm wavelength range), covering both monolithic and composite (absorber coupled) devices. The main landmarks and state-of-the-art devices are described in the order of the increasing degree of technological complexity (thick substrates, thinned or suspended substrates, micromachined silicon-based structures), while keeping in mind the sensitivity versus time response compromise and the aimed competitiveness with photon detectors. The last section treats far-infrared (antenna coupled) hot electron bolometers (HEBs), whose emergence has benefited from newly developed superconducting nanostructures and which are promising candidates for terahertz heterodyne detection. Finally, recent results on both HTSC and (more mature) low-Tc HEBs are given.

[1]  Jianai Zhao,et al.  Optical studies of dye-coated superconductor junctions , 1996, Photonics West.

[2]  H. Kurz,et al.  Epitaxial YBa2Cu3O7−δ air‐bridge microbolometers on silicon substrates , 1995 .

[3]  A. Gilabert,et al.  Bolometric photoresponse of superconducting YBa2Cu3O7-x/La2CuO4 multilayers to infrared radiation , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[4]  Hong‐cheng Li,et al.  High T/sub c/ GdBa/sub 2/Cu/sub 3/O/sub 7-/spl delta// superconducting thin film bolometers , 1997, IEEE Transactions on Applied Superconductivity.

[5]  Burgess R. Johnson,et al.  Transition edge YBa2Cu3O7-x microbolometers for infrared staring arrays , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[6]  Daniel E. Prober,et al.  Superconducting terahertz mixer using a transition-edge microbolometer , 1993 .

[7]  K. Delin,et al.  Fabrication of high-T/sub c/ hot-electron bolometric mixers for terahertz applications , 1997, IEEE Transactions on Applied Superconductivity.

[8]  Paul L. Richards,et al.  Sensitive bolometers using high‐Tc superconducting thermometers for wavelengths 20–300 μm , 1993 .

[9]  P. Kruse Physics and applications of high-Tc superconductors for infrared detectors , 1990 .

[11]  Tianqi Wang,et al.  High-temperature superconducting microbolometer , 1990 .

[13]  P. Kruse,et al.  YBa/sub 2/Cu/sub 3/O/sub 7/ superconductor microbolometer arrays fabricated by silicon micromachining , 1993, IEEE Transactions on Applied Superconductivity.

[14]  B. Lakew,et al.  High Tc superconductor bolometer with record performance , 1994 .

[15]  P. Richards,et al.  Fabrication of an infrared bolometer with a high T/sub c/ superconducting thermometer , 1990 .

[16]  Samuel Harvey Moseley,et al.  Construction and performance of a high‐temperature‐superconductor composite bolometer , 1989 .

[17]  W. Eidelloth Optical response of highly oriented YBCO thin films , 1991 .

[18]  G. Koren,et al.  High temperature superconducting bolometer , 1991 .

[19]  John C. Brasunas,et al.  High-Tc superconducting bolometer on chemically-etched 7 μm thick sapphire , 2000 .

[20]  Alain J. Kreisler,et al.  Recent progress in HTSC bolometric detectors at terahertz frequencies , 1998, Optics & Photonics.

[21]  Semenov,et al.  Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation. , 1994, Physical review. B, Condensed matter.

[22]  D. H. Andrews,et al.  Attenuated Superconductors I. For Measuring Infra‐Red Radiation , 1942 .

[23]  B. Dwir,et al.  A sensitive YBaCuO thin film bolometer with ultrawide wavelength response , 1992 .

[24]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[25]  Paul W. Kruse,et al.  Silicon-microstructure superconducting microbolometer infrared arrays , 1993, Optics & Photonics.

[26]  Wolfgang Ruppel,et al.  Black gold deposits as absorbers for far infrared radiation , 1996 .

[27]  M. Montuori,et al.  Feasibility of a high‐temperature bolometer based on Bi2Sr2CaCu2O8+x superconducting films , 1993 .

[28]  F. Tong,et al.  High TcYBa2Cu3O7−δ superconducting transition-edge microbolometers , 1995 .

[29]  Stuart A. Wolf,et al.  Optical detection in thin granular films of Y‐Ba‐Cu‐O at temperatures between 4.2 and 100 K , 1987 .

[30]  D. Winkler,et al.  A nanoscale YBCO mixer optically coupled with a bow tie antenna , 1999 .

[31]  C. Eom,et al.  Gain bandwidth and noise characteristics of millimeter-wave YBa2Cu3O7 hot-electron bolometer mixers , 1998 .

[32]  E. V. Pechen,et al.  Broad-band coupling of THz radiation to an hot-electron bolometer mixer , 1996 .

[33]  Boris S. Karasik,et al.  Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications , 1997 .

[34]  Anders Skalare,et al.  Large Bandwidth and Low Noise in a Diffusion-Cooled Hot-Electron Bolometer Mixer , 1996 .

[35]  R. Vaglio,et al.  Composite bolometer based on Bi2Sr2CaCu2O8+x single crystals , 1993 .

[36]  W.C.B. Peatman,et al.  Nanostructure GaAS Schottky diodes for far-infrared heterodyne receivers , 1994 .

[37]  A. Frenkel,et al.  Thermal and nonequilibrium responses of superconductors for radiation detectors , 1994 .

[38]  Paul W. Kruse,et al.  High Tc superconducting IR detectors , 1990, Defense, Security, and Sensing.

[39]  J. Kawamura,et al.  Low noise NbN lattice-cooled superconducting hot-electron bolometric mixers at submillimeter wavelengths , 1997 .

[40]  D. B. Fenner,et al.  Epitaxial YBa2Cu3O7−y bolometers on micromachined windows in silicon wafers , 1993 .

[41]  Erich N. Grossman,et al.  Lithographic spiral antennas at short wavelengths , 1991 .

[42]  Jonas Zmuidzinas,et al.  Low-noise 1 THz niobium superconducting tunnel junction mixer with a normal metal tuning circuit , 1996 .

[43]  Adrian T. Lee,et al.  A superconducting bolometer with strong electrothermal feedback , 1996 .

[44]  P.A.J. de Korte,et al.  LOW NOISE HIGH-TC SUPERCONDUCTING BOLOMETERS ON SILICON NITRIDE MEMBRANES FOR FAR-INFRARED DETECTION , 1997 .

[45]  D. Robbes,et al.  YBCO microbolometer operating below T/sub c/: a modelization based on critical current-temperature dependence , 1993, IEEE Transactions on Applied Superconductivity.

[46]  B.S. Karasik,et al.  Optimal choice of material for HEB superconducting mixers , 1999, IEEE Transactions on Applied Superconductivity.

[47]  D. G. McDonald,et al.  Passivation, transition width, and noise for YBCO bolometers on silicon , 1999, IEEE Transactions on Applied Superconductivity.

[48]  Kin Li,et al.  High responsivity YBa2Cu3O7-x microbolometers with fast response times , 1993 .

[49]  K. Jacobs,et al.  Diffusion-cooled superconducting hot electron bolometer heterodyne mixer between 630 and 820 GHz , 1997, IEEE Transactions on Applied Superconductivity.

[50]  Daniel Bloyet,et al.  Suspended epitaxial YBaCuO microbolometers fabricated by silicon micromachining: Modeling and measurements , 1997 .

[51]  Alain J. Kreisler,et al.  Recent progress in HTSC bolometric and nonbolometric detectors , 1996, Photonics West.

[52]  P. Richards,et al.  Feasibility of the high Tc superconducting bolometer , 1989 .

[53]  E. Grossman,et al.  Low noise high‐temperature superconducting bolometers for infrared imaging , 1996 .

[54]  H. Kraus Superconductive bolometers and calorimeters , 1996 .