Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain

This paper considers finite element approximation and three coupled type iterations of stationary magnetohydrodynamics (MHD) equations on a general Lipschitz domain. An additional Lagrange multiplier r is introduced related to divergence free of magnetic field b and the b is analyzed in H ( curl ; ? ) space, which is proposed in Schotzau (2004). In finite element discretization, the hydrodynamic unknowns are approximated by stable finite element pairs, and the magnetic unknown is discretized by curl-conforming Nedelec element spaces. The well-posedness of this formula and the optimal error estimate are provided. Based on this, for numerical implementation of this scheme, we propose and discuss three coupled type iterative methods which are stable and convergent under different conditions. Specifically, Iteration I is stable and convergent under strong condition. Iteration II is stable and convergent under weaker condition. Iteration III is unconditionally stable and convergent under the weakest condition. Finally, some numerical tests confirm our theoretical analysis.

[1]  Chongsheng Cao,et al.  Two regularity criteria for the 3D MHD equations , 2009, 0903.2577.

[2]  Zhouping Xin,et al.  On the regularity of weak solutions to the magnetohydrodynamic equations , 2005 .

[3]  Zhouping Xin,et al.  Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations , 2005 .

[4]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[5]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[6]  Qionglei Chen,et al.  On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations , 2007, 0711.0123.

[7]  A. Prohl Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .

[8]  Jean-Claude Nédélec,et al.  Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .

[9]  Paul Houston,et al.  A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics , 2009, J. Sci. Comput..

[10]  Dongho Chae Nonexistence of self-similar singularities in the viscous magnetohydrodynamics with zero resistivity , 2007 .

[11]  Dominik Schötzau,et al.  Mixed finite element approximation of incompressible MHD problems based on weighted regularization , 2004 .

[12]  T. Lelièvre,et al.  Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  A. Meir,et al.  Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .

[15]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[16]  Santiago Badia,et al.  On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..

[17]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[18]  Jiahong Wu,et al.  Regularity Criteria for the Generalized MHD Equations , 2008 .

[19]  M. Gunzburger,et al.  On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .

[20]  Eric Ronald Priest,et al.  Advances in solar system magnetohydrodynamics , 1991 .

[21]  A. Lifschitz,et al.  Magnetohydrodynamics and Spectral Theory , 1989 .

[22]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[23]  Cheng He,et al.  On the regularity criteria for weak solutions to the magnetohydrodynamic equations , 2007 .

[24]  C. Miao,et al.  Well-Posedness of the Ideal MHD System in Critical Besov Spaces , 2006 .

[25]  Endre Süli,et al.  Large-time behaviour of solutions to the magneto-hydrodynamics equations , 1996 .

[26]  Dominik Schötzau,et al.  Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.

[27]  Ramon Codina,et al.  Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations , 2006 .

[28]  Bo Zhang,et al.  Well‐posedness for the incompressible magneto‐hydrodynamic system , 2007 .

[29]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[30]  Andreas Prohl,et al.  Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations , 2010, Math. Comput..

[31]  Jiahong Wu,et al.  Regularity results for weak solutions of the 3D MHD equations , 2003 .