暂无分享,去创建一个
[1] B. Sturmfels,et al. Algebraic Algorithms for Sampling from Conditional Distributions Eye Color Black Brunette Red Blonde Total , 2022 .
[2] Michael Stillman,et al. Learning selection strategies in Buchberger's algorithm , 2020, ICML.
[3] Volker Strassen,et al. A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..
[4] Guillaume Lample,et al. Deep Learning for Symbolic Mathematics , 2019, ICLR.
[5] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[6] Jesús A. De Loera,et al. Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..
[7] David Naccache,et al. Gröbner Basis , 2011, Encyclopedia of Cryptography and Security.
[8] Jesús A. De Loera,et al. Random sampling in computational algebra: Helly numbers and violator spaces , 2015, J. Symb. Comput..
[9] Carlos Beltrán,et al. On Smale's 17th Problem: A Probabilistic Positive Solution , 2008, Found. Comput. Math..
[10] L. M. Pardo,et al. Smale’s 17th problem: Average polynomial time to compute affine and projective solutions , 2008 .
[11] J. D. Loera,et al. Random monomial ideals , 2017, Journal of Algebra.
[12] Thomas Dubé,et al. The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..
[13] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[14] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[15] Jean-Charles Faugère,et al. Sparse Gröbner bases: the unmixed case , 2014, ISSAC.
[16] Yang-Hui He,et al. Machine-Learning Mathematical Structures , 2021, International Journal of Data Science in the Mathematical Sciences.
[17] Average behavior of minimal free resolutions of monomial ideals , 2018, Proceedings of the American Mathematical Society.
[18] Bernd Sturmfels,et al. Learning algebraic varieties from samples , 2018, Revista Matemática Complutense.
[19] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.