Materials research for fusion

For achieving proper safety and efficiency of future fusion power plants, low-activation materials able to withstand the extreme fusion conditions are needed. Here, the irradiation physics at play and fusion materials research is reviewed.

[1]  Byung Jun Kim,et al.  Overview on recent progress toward small specimen test technique , 2015 .

[2]  G. E. Lucas,et al.  The development of small specimen mechanical test techniques , 1983 .

[3]  F. Willaime,et al.  Ab Initio Electronic Structure Calculations for Nuclear Materials , 2020, Comprehensive Nuclear Materials.

[4]  J. P. Blewett,et al.  An Intense Li( d,n ) Neutron Radiation Test Facility for Controlled Thermonuclear Reactor Materials Testing , 1976 .

[5]  P. F. Morris,et al.  Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment , 2014, 1408.3546.

[6]  Joaquin Mollá,et al.  Sensitivity of IFMIF-DONES irradiation characteristics to different design parameters , 2015 .

[7]  Ulrich Fischer,et al.  Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility and fusion power reactors , 2004 .

[8]  Niels Bohr,et al.  Scattering and Stopping of Fission Fragments , 1940 .

[9]  R. Prokopec,et al.  Characterization and qualification of advanced insulators for fusion magnets , 2013 .

[10]  C. Gil,et al.  The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment , 2014 .

[11]  Akihiro Suzuki,et al.  IFMIF/EVEDA lithium test loop: design and fabrication technology of target assembly as a key component , 2011 .

[12]  A. G. Maddock Chemie Heisser Atome , 1970 .

[13]  Jochen Linke,et al.  Investigation of tungsten alloys as plasma facing materials for the ITER divertor , 2002 .

[14]  M. Marinica,et al.  Irradiation-induced formation of nanocrystallites with C15 Laves phase structure in bcc iron. , 2012, Physical review letters.

[15]  J. Lindhard,et al.  STOPPING POWER OF ELECTRON GAS AND EQUIPARTITION RULE , 1964 .

[16]  P. Vladimirov,et al.  Ab initio study of hydrogen on beryllium surfaces , 2015 .

[17]  R. Heidinger,et al.  Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector. , 2016, The Review of scientific instruments.

[18]  C. Domain,et al.  Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models , 2008 .

[19]  A. E. Sand,et al.  High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws , 2013, 1306.3824.

[20]  T. Muroga,et al.  High-heat-flux experiment on plasma-facing materials by electron beam irradiation , 1994 .

[21]  Regina Knitter,et al.  Recent developments of solid breeder fabrication , 2013 .

[22]  Brian D. Wirth,et al.  Fusion materials modeling: Challenges and opportunities , 2011 .

[23]  Mohamed A. Abdou,et al.  A volumetric neutron source for fusion nuclear technology testing and development , 1995 .

[24]  P. Barabaschi,et al.  A Stepped Approach from IFMIF/EVEDA Toward IFMIF , 2014 .

[25]  G. R. Odette,et al.  Modeling of microstructural evolution under irradiation , 1979 .

[26]  R. Cook,et al.  A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron , 2012 .

[27]  B. Wirth,et al.  Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies , 2015 .

[28]  A. A. Gervash,et al.  Comparison of electron beam test facilities for testing of high heat flux components , 2000 .

[29]  P. J. Knight,et al.  Conceptual design of a component test facility based on the spherical tokamak , 2008 .

[30]  R. Rolli,et al.  Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase , 2016 .

[31]  H. Bethe Bremsformel für Elektronen relativistischer Geschwindigkeit , 1932 .

[32]  T. Muroga,et al.  The effect of recoil energy spectrum on cascade structures and defect production efficiencies , 1985 .

[33]  Kenji Tobita,et al.  Recent technical progress on BA Program: DEMO activities and IFMIF/EVEDA , 2016 .

[34]  N. Chauvin,et al.  International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization. , 2014, The Review of scientific instruments.

[35]  Mario Pérez,et al.  The engineering design evolution of IFMIF: From CDR to EDA phase , 2015 .

[36]  Roland Heidinger,et al.  Neutron irradiation studies on window materials for EC wave systems , 2001 .

[37]  H. Kawamura,et al.  New electron beam facility for irradiated plasma facing materials testing in hot cell , 1996 .

[38]  T. Besmann 1.17 – Computational Thermodynamics: Application to Nuclear Materials , 2012 .

[39]  R. Rolli,et al.  Effect of helium on tensile properties and microstructure in 9%Cr–WVTa–steel after neutron irradiation up to 15 dpa between 250 and 450 °C , 2009 .

[40]  M. Kiritani The need for improved temperature control during reactor irradiation , 1988 .

[41]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[42]  G. R. Odette,et al.  On the ductile to brittle transition in martensitic stainless steels — Mechanisms, models and structural implications , 1994 .

[43]  P. Barabaschi,et al.  Technical analysis of an early fusion neutron source based on the enhancement of the IFMIF/EVEDA accelerator prototype , 2014 .

[44]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[45]  G. J. Butterworth,et al.  Evaluation of reduced-activation options for fusion materials development , 1992 .

[46]  Mohamed A. Abdou,et al.  Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials , 2007 .

[47]  M. Gilbert,et al.  Neutron-induced transmutation effects in W and W-alloys in a fusion environment , 2011 .

[48]  Laila A. El-Guebaly,et al.  Blanket/Materials Testing Strategy for FNSF and Its Breeding Potential , 2015 .

[49]  J. Aktaa,et al.  Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60 , 2011 .

[50]  T. Taylor,et al.  A high-current low-emittance dc ECR proton source , 1991 .

[51]  P. Chappuis,et al.  EVOLUTION OF FRAMATOME AND CEA HIGH THERMAL FLUX STATION FOR FUSION TECHNOLOGY EXPERIMENTS NEEDS , 1997 .

[52]  Eiichi Wakai,et al.  Measurement of Li target thickness in the EVEDA Li Test Loop , 2015 .

[53]  T. Kondo,et al.  International strategy for fusion materials development , 2000 .

[54]  D. Parkin,et al.  Displacement cascades in polyatomic materials , 1981 .

[55]  Byung Jun Kim,et al.  Application of master curve method to the evaluation of fracture toughness of F82H steels , 2013 .

[56]  R. Stoller The role of cascade energy and temperature in primary defect formation in iron , 2000 .

[57]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[58]  R. Doerner,et al.  Beryllium as a Plasma-Facing Material for Near-Term Fusion Devices , 2012 .

[59]  J. Knaster,et al.  Accelerators for Fusion Materials Testing , 2015 .

[60]  Steven J. Zinkle,et al.  Critical questions in materials science and engineering for successful development of fusion power , 2007 .

[61]  T. Muroga,et al.  Multimodal options for materials research to advance the basis for fusion energy in the ITER era , 2013 .

[62]  R. W. Conn,et al.  Low activation materials for fusion applications , 1984 .

[63]  A. Möslang,et al.  Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources , 2004 .

[64]  Tobias Heupel,et al.  Development and validation status of the IFMIF High Flux Test Module , 2011 .

[65]  J.M. Park,et al.  Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF) , 2010 .

[66]  P. Arena,et al.  Engineering design and steady state thermomechanical analysis of the IFMIF European lithium target system , 2013, 2013 IEEE 25th Symposium on Fusion Engineering (SOFE).

[67]  S. Zinkle,et al.  Evaluation of irradiation facility options for fusion materials research and development , 2013 .

[68]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[69]  E. W. Pottmeyer,et al.  The fusion materials irradiation test facility at Hanford , 1979 .

[70]  S. Dudarev,et al.  Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials , 2013, 1311.5079.

[71]  Huijun Li,et al.  Recent progress in research on tungsten materials for nuclear fusion applications in Europe , 2013 .

[72]  A. Nishimura,et al.  Development of fatigue life evaluation method using small specimen , 2013 .

[73]  Eiichi Wakai,et al.  Assessment of the beam–target interaction of IFMIF: A state of the art , 2014 .

[74]  M. Kelly Superconducting Radio-Frequency Cavities for Low-Beta Particle Accelerators , 2012 .

[75]  W. Cai 1.09 – Molecular Dynamics , 2012 .

[76]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[77]  Frederik Arbeiter,et al.  Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules , 2012 .

[78]  Yutai Katoh,et al.  Current status and recent research achievements in SiC/SiC composites , 2014 .

[79]  Mark T. Robinson,et al.  Basic physics of radiation damage production , 1994 .

[80]  M. Ferraris,et al.  Carbon as a Fusion Plasma-Facing Material , 2012 .

[81]  N. Ghoniem 1.16 – Dislocation Dynamics , 2012 .

[82]  W. L. Brown,et al.  ANNEALING OF BOMBARDMENT DAMAGE IN A DIAMOND-TYPE LATTICE: THEORETICAL , 1953 .

[83]  A. Ibarra,et al.  IFMIF: overview of the validation activities , 2013 .

[84]  K. Leonard 4.06 – Radiation Effects in Refractory Metals and Alloys , 2012 .

[85]  T. Noda,et al.  Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors , 1998 .

[86]  D. Zito,et al.  Thermal-Mechanical Test on ITER Primary First Wall Mock-Ups , 2002 .

[87]  Reinhard Pippan,et al.  Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials , 2013 .

[88]  N. Mousseau,et al.  Kinetic Monte Carlo Simulations of Irradiation Effects , 2020, Comprehensive Nuclear Materials.

[89]  M. Kiritani Defect structure evolution from radiation damage with D-T fusion neutrons , 1985 .

[90]  Eiichi Wakai,et al.  IFMIF, the European-Japanese efforts under the Broader Approach Agreement towards a Li(d,xn) neutron source:current status and future options , 2016 .

[91]  Y. Kato,et al.  Present status of ESNIT (energy selective neutron irradiation test facility) program , 1994 .

[92]  Eiichi Wakai,et al.  Validation of IFMIF liquid Li target for IFMIF/EVEDA project , 2015 .

[93]  A. Möslang,et al.  The role of small specimen test technology in fusion materials development , 2007 .

[94]  Steven J. Zinkle,et al.  Materials RD for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group , 2014 .

[95]  T. Yoshiie,et al.  Fission-fusion correlation by fission reactor irradiation with improved control , 1990 .

[96]  G. E. Lucas,et al.  Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source , 1996 .

[97]  G. Pintsuk 4.17 – Tungsten as a Plasma-Facing Material , 2012 .

[98]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[99]  Gary S. Was,et al.  Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems , 2007 .

[100]  H. Ullmaier The influence of helium on the bulk properties of fusion reactor structural materials , 1984 .

[101]  L. Mansur,et al.  Mechanical property changes induced in structural alloys by neutron irradiations with different helium to displacement ratios , 1988 .

[102]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[103]  E. K. Opperman,et al.  Fusion Materials Irradiation Test Facility a Facility for Fusion Materials Qualification , 1983 .

[104]  A. A. Gervash,et al.  Comparative thermal cyclic testing and strength investigation of different Be/Cu joints , 1998 .

[105]  Eiichi Wakai,et al.  IFMIF, a fusion relevant neutron source for material irradiation current status , 2014 .

[106]  Enrico Fermi,et al.  The Ionization Loss of Energy in Gases and in Condensed Materials , 1940 .

[107]  Radiation damage conditions for ESS target hull and irradiation rigs , 2005 .

[108]  J. Thomason,et al.  FAFNIR: Strategy and risk reduction in accelerator driven neutron sources for fusion materials irradiation data , 2014 .

[109]  R. Heidinger,et al.  Innovative materials for energy technology , 2008 .

[110]  Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation , 2014, 1408.0630.

[111]  H. Weber RADIATION EFFECTS ON SUPERCONDUCTING FUSION MAGNET COMPONENTS , 2011 .

[112]  Koichiro Ezato,et al.  ITER Relevant High Heat Flux Testing on Plasma Facing Surfaces , 2005 .

[113]  L. Greenwood Neutron interactions and atomic recoil spectra , 1994 .

[114]  E. Wigner Theoretical Physics in the Metallurgical Laboratory of Chicago , 1946 .

[115]  Yican Wu,et al.  Status of R&D activities on materials for fusion power reactors , 2007 .

[116]  Muyuan Li,et al.  Sweeping heat flux loads on divertor targets: Thermal benefits and structural impacts , 2016 .

[117]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[118]  Yan Jian-cheng Research of High Heat Flux for Divertor Materials , 2003 .

[119]  M. Kedzie,et al.  Prototype 350 MHz niobium spoke-loaded cavities , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[120]  E. Diegele,et al.  Current status and recent research achievements in ferritic/martensitic steels , 2014 .

[121]  G. Odette,et al.  Development of mechanical property correlation methodology for fusion environments , 1979 .

[122]  T. Muroga,et al.  Present Status of Vanadium Alloys for Fusion Applications , 2014 .

[123]  E. Wakai,et al.  Demonstration of Li target facility in IFMIF/EVEDA project: Li target stability in continuous operation of entire system , 2016 .

[124]  M. Fujiwara,et al.  Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten , 2009 .

[125]  Enric Bargalló,et al.  The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source , 2015, 2112.14211.

[126]  Ulrich Fischer,et al.  Overview of recent progress in IFMIF neutronics , 2006 .

[127]  Phase Field Methods , 2012 .

[128]  A. Möslang,et al.  The Development of Structural Materials for Reduced Long-Term Activation , 1996 .

[129]  C. Domain,et al.  On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation , 2011 .

[130]  R S Pease,et al.  REVIEW ARTICLES: The Displacement of Atoms in Solids by Radiation , 1955 .

[131]  E. J. Fulton,et al.  Voids in Irradiated Stainless Steel , 1967, Nature.

[132]  P. Franke,et al.  The influence of magnetic and chemical ordering on the phase diagram of CrFeNi , 2011 .

[133]  Neil B. Morley,et al.  Overview of liquid metal TBM concepts and programs , 2008 .

[134]  G. Vieider,et al.  Development of tungsten armor and bonding to copper for plasma-interactive components , 1998 .

[135]  J. D. Schneider,et al.  High Power Operations of LEDA , 2000 .

[136]  M. Seki,et al.  Performance of jaeri electron beam irradiation stand , 1991 .