Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling

Abstract A novel hierarchical multiscale strength reduction method with a coupled finite element method (FEM) and discrete element method (DEM) approach is proposed for a heterogeneous slope. This approach is implemented and validated by employing a soil and rock mixture (SRM) slope. Compared with conventional strength reduction method, this method avoids the expensive cost of large field tests in parameters estimation and provides a better understanding of the failure mechanism with macroscopic and microscopic results. The multiscale simulation approach, which is directly based on particle-level simulation and bypasses conventional constitutive assumptions, provides a novel numerical tool for slope stability analysis of heterogeneous geomaterials.

[1]  M. Satake,et al.  Fabric tensor in granular materials , 1982 .

[2]  Gioacchino Viggiani,et al.  Discrete and continuum analysis of localised deformation in sand using X-ray mu CT and volumetric digital image correlation , 2010 .

[3]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[4]  Ning Guo,et al.  Bridging the micro and macro for granular media: A computational multi-scale paradigm , 2014 .

[5]  Félix Darve,et al.  Numerical simulation of drained triaxial test using 3D discrete element modeling , 2009 .

[6]  Wen-jie Xu,et al.  Large-scale in-situ test for mechanical characterization of soil–rock mixture used in an embankment dam , 2016 .

[7]  Ning Guo,et al.  Multiscale modeling and analysis of compaction bands in high-porosity sandstones , 2018 .

[8]  Ming Cai,et al.  A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation , 2018, Computers and Geotechnics.

[9]  P. Cundall A computer model for simulating progressive, large-scale movements in blocky rock systems , 1971 .

[10]  Hongyuan Zhou,et al.  Soil–rock mixture shear strength measurement based onin situborehole pressure-shear tests , 2018, Journal of Geophysics and Engineering.

[11]  Shuling Huang,et al.  Triaxial Test and Mechanical Analysis of Rock-Soil Aggregate Sampled from Natural Sliding Mass , 2015 .

[12]  Yang Liu,et al.  Multiscale Modeling of Granular Materials , 2015 .

[13]  L. Brinson,et al.  A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium , 2006 .

[14]  N. Morgenstern,et al.  Stability Coefficients for Earth Slopes , 1960 .

[15]  Xuxin Tu,et al.  Multiscale framework for behavior prediction in granular media , 2009 .

[16]  Yu-zhen Yu,et al.  Triaxial tests of soil–rock mixtures with different rock block distributions , 2016 .

[17]  Ning Guo,et al.  3D multiscale modeling of strain localization in granular media , 2016 .

[18]  H. Fang,et al.  Stability of Earth Slopes , 1991 .

[19]  Hiroshi Morioka,et al.  FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations , 2007 .

[20]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[21]  Wei Gao,et al.  Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam , 2016 .

[22]  Yang Liu,et al.  A nonlocal multiscale discrete‐continuum model for predicting mechanical behavior of granular materials , 2016 .

[23]  T. Roessler,et al.  DEM parameter calibration of cohesive bulk materials using a simple angle of repose test , 2019, Particuology.

[24]  E. Aharonov,et al.  Long runout landslides: a solution from granular mechanics , 2015, Front. Phys..

[25]  Ning Guo,et al.  A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media , 2014 .

[26]  E. Spencer A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces , 1967 .

[27]  D. V. Griffiths,et al.  Programming the finite element method , 1982 .

[28]  M. Marigo,et al.  Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis , 2015, CPM 2015.

[29]  D. V. Griffiths,et al.  SLOPE STABILITY ANALYSIS BY FINITE ELEMENTS , 1999 .

[30]  A. Drescher,et al.  Slope stability analysis by strength reduction , 1999 .

[31]  Jeoung Seok Yoon,et al.  Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation , 2007 .

[32]  S. Sarma STABILITY ANALYSIS OF EMBANKMENTS AND SLOPES , 1973 .

[33]  Ning Guo,et al.  Multiscale insights into classical geomechanics problems , 2016 .

[34]  D. Naylor,et al.  Finite Elements and Slope Stability , 1982 .

[35]  D. Els,et al.  Calibration of granular material parameters for DEM modelling and numerical verification by blade-granular material interaction. , 2009 .

[36]  Masanobu Oda,et al.  FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS , 1982 .

[37]  Stefan Luding,et al.  Micro¿macro transition for anisotropic, frictional granular packings , 2004 .

[38]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[39]  Min Wang,et al.  Calibrating the Micromechanical Parameters of the PFC2D(3D) Models Using the Improved Simulated Annealing Algorithm , 2017 .

[40]  E. Bosco,et al.  Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates , 2016, Granular Matter.

[41]  Weiya Xu,et al.  A coupling method incorporating digital image processing and discrete element method for modeling of geomaterials , 2018 .

[42]  W. Xiang,et al.  Research on mechanical parameters of coarse-grained sliding soil based on CT scanning and numerical tests , 2016, Landslides.

[43]  Christian Miehe,et al.  Homogenization and two‐scale simulations of granular materials for different microstructural constraints , 2010 .

[44]  Gaël Combe,et al.  Two-scale modeling of granular materials: a DEM-FEM approach , 2011 .