Copula Bayesian Networks

We present the Copula Bayesian Network model for representing multivariate continuous distributions, while taking advantage of the relative ease of estimating univariate distributions. Using a novel copula-based reparameterization of a conditional density, joined with a graph that encodes independencies, our model offers great flexibility in modeling high-dimensional densities, while maintaining control over the form of the univariate marginals. We demonstrate the advantage of our framework for generalization over standard Bayesian networks as well as tree structured copula models for varied real-life domains that are of substantially higher dimension than those typically considered in the copula literature.

[1]  Kenneth J. Koehler,et al.  Constructing multivariate distributions with specific marginal distributions , 1995 .

[2]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[3]  Gal Elidan,et al.  Inference-less Density Estimation using Copula Bayesian Networks , 2010, UAI.

[4]  Roger M. Cooke,et al.  The vine copula method for representing high dimensional dependent distributions: application to continuous belief nets , 2002, Proceedings of the Winter Simulation Conference.

[5]  Matthias Fischer,et al.  Constructing and generalizing given multivariate copulas: a unifying approach , 2012 .

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Ricardo M. S. Accioly,et al.  Modeling dependence with copulas: a useful tool for field development decision process , 2004 .

[8]  Nir Friedman,et al.  Gaussian Process Networks , 2000, UAI.

[9]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[10]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[11]  Patricia M. Morillas,et al.  A method to obtain new copulas from a given one , 2005 .

[12]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[13]  Brendan J. Frey,et al.  Cumulative Distribution Networks and the Derivative-sum-product Algorithm: Models and Inference for Cumulative Distribution Functions on Graphs , 2008, J. Mach. Learn. Res..

[14]  Michael I. Jordan,et al.  Estimating Dependency Structure as a Hidden Variable , 1997, NIPS.

[15]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[16]  E. T. Olsen,et al.  Copulas and Markov processes , 1992 .

[17]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[18]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[22]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[23]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[24]  Sergey Kirshner,et al.  Learning with Tree-Averaged Densities and Distributions , 2007, NIPS.

[25]  Anton Schwaighofer,et al.  Structure Learning with Nonparametric Decomposable Models , 2007, ICANN.

[26]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[27]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[28]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[29]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .

[30]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[31]  Andréas Heinen,et al.  Asymmetric CAPM Dependence for Large Dimensions: The Canonical Vine Autoregressive Copula Model , 2008 .

[32]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .