Recursive Maximum Likelihood Identification of Jump Markov Nonlinear Systems

We present an online method for joint state and parameter estimation in jump Markov non-linear systems (JMNLS). State inference is enabled via the use of particle filters which makes the method applicable to a wide range of non-linear models. To exploit the inherent structure of JMNLS, we design a Rao-Blackwellized particle filter (RBPF) where the discrete mode is marginalized out analytically. This results in an efficient implementation of the algorithm and reduces the estimation error variance. The proposed RBPF is then used to compute, recursively in time, smoothed estimates of complete data sufficient statistics. Together with the online expectation maximization algorithm, this enables recursive identification of unknown model parameters including the transition probability matrix. The method is also applicable to online identification of jump Markov linear systems(JMLS). The performance of the method is illustrated in simulations and on a localization problem in wireless networks using real data.

[1]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[2]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[3]  John Lygeros,et al.  A general framework for the identification of jump Markov linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[4]  Mübeccel Demirekler,et al.  Maximum Likelihood Estimation of Transition Probabilities of Jump Markov Linear Systems , 2008, IEEE Transactions on Signal Processing.

[5]  Christophe Andrieu,et al.  Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..

[6]  Gianluigi Mongillo,et al.  Online Learning with Hidden Markov Models , 2008, Neural Computation.

[7]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[8]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[9]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[10]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[11]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[12]  R. Shumway,et al.  Dynamic linear models with switching , 1991 .

[13]  Gustaf Hendeby,et al.  Rao-Blackwellized particle filter for Markov modulated nonlinear dynamic systems , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[14]  Thomas Bo Schön,et al.  An explicit variance reduction expression for the Rao-Blackwellised particle filter , 2011 .

[15]  Mübeccel Demirekler,et al.  An online sequential algorithm for the estimation of transition probabilities for jump Markov linear systems , 2006, Autom..

[16]  Cedric Nishan Canagarajah,et al.  Mobility Tracking in Cellular Networks Using Particle Filtering , 2007, IEEE Transactions on Wireless Communications.

[17]  Wojciech Pieczynski,et al.  Kalman filtering approximations in triplet Markov Gaussian switching models , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[18]  Sumeetpal S. Singh,et al.  Forward Smoothing using Sequential Monte Carlo , 2010, 1012.5390.

[19]  Jean Pierre Delmas,et al.  An equivalence of the EM and ICE algorithm for exponential family , 1997, IEEE Trans. Signal Process..

[20]  Y. Boers,et al.  Efficient particle filter for jump Markov nonlinear systems , 2005 .

[21]  Manuel Davy,et al.  Particle Filtering for Multisensor Data Fusion With Switching Observation Models: Application to Land Vehicle Positioning , 2007, IEEE Transactions on Signal Processing.

[22]  Eric Moulines,et al.  Inference in Hidden Markov Models (Springer Series in Statistics) , 2005 .

[23]  Vikram Krishnamurthy,et al.  Expectation maximization algorithms for MAP estimation of jump Markov linear systems , 1999, IEEE Trans. Signal Process..

[24]  Fredrik Lindsten,et al.  Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..

[25]  Nick Whiteley,et al.  Chapter 3 Recent Developments in Auxiliary Particle Filtering , 2009 .

[26]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[27]  Jonas Medbo,et al.  Propagation channel impact on LTE positioning accuracy: A study based on real measurements of observed time difference of arrival , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[28]  Jitendra Tugnait,et al.  Adaptive estimation and identification for discrete systems with Markov jump parameters , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[29]  L. Dousset Understanding Human Relations (Kinship Systems) , 2011 .

[30]  W. Pieczynski Exact filtering in conditionally Markov switching hidden linear models , 2011 .

[31]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[32]  Ba-Ngu Vo,et al.  A Gaussian Mixture PHD Filter for Nonlinear Jump Markov Models , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[33]  Monica Nicoli,et al.  A Jump Markov Particle Filter for Localization of Moving Terminals in Multipath Indoor Scenarios , 2008, IEEE Transactions on Signal Processing.

[34]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[35]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[36]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[37]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[38]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[39]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[40]  Fredrik Gustafsson,et al.  Online EM algorithm for joint state and mixture measurement noise estimation , 2012, 2012 15th International Conference on Information Fusion.

[41]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[42]  Sumeetpal S. Singh,et al.  An Online Expectation–Maximization Algorithm for Changepoint Models , 2013 .

[43]  Télécom ParisTech ONLINE SEQUENTIAL MONTE CARLO EM ALGORITHM , 2009 .

[44]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[45]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[46]  Stéphane Derrode,et al.  Exact Fast Computation of Optimal Filter in Gaussian Switching Linear Systems , 2013, IEEE Signal Processing Letters.

[47]  Christophe Andrieu,et al.  Efficient particle filtering for Jump Markov Systems , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[48]  Bor-Sen Chen,et al.  Robust Mobile Location Estimator with NLOS Mitigation using Interacting Multiple Model Algorithm , 2006, IEEE Transactions on Wireless Communications.

[49]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[50]  D. P. Atherton,et al.  Adaptive interacting multiple model algorithm for tracking a manoeuvring target , 1995 .

[51]  Anja Klein,et al.  Robust mobile terminal tracking in NLOS environments using interacting multiple model algorithm , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[52]  X. R. Li,et al.  Online Bayesian estimation of transition probabilities for Markovian jump systems , 2004, IEEE Transactions on Signal Processing.

[53]  Olivier Capp'e Online EM Algorithm for Hidden Markov Models , 2009, 0908.2359.

[54]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[55]  Fredrik Gustafsson,et al.  Online EM algorithm for jump Markov systems , 2012, 2012 15th International Conference on Information Fusion.

[56]  É. Moulines,et al.  Online Expectation Maximization algorithm to solve the SLAM problem , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).